
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science

Using Global Constraints for Local Search

Alexander Nareyek

Abstract� Conventional ways of using local search are di�cult to generalize�
Increased e�ciency is the only goal� generality often being disregarded� This
is manifested in the highly monolithic encodings of complex problems and the
application of highly speci�c satisfaction methods�

Other approaches take the general constraint programming framework
as a starting point and try to introduce local search methods for constraint
satisfaction� These methods frequently fail because they have only a very
limited view of the unknown search�space structure�

The present paper attempts to overcome the drawbacks of these two ap�
proaches by using global constraints� The use of global constraints for local
search allows us to revise a current state on a more global level with domain�
speci�c knowledge� while preserving features like reusability and maintenance�
The proposed strategy is demonstrated on a dynamic job�shop scheduling prob�
lem�

�� Introduction

The use of local search has become very popular in recent years as applications
have begun to tackle complex real�world optimization problems for which complete
�re�nement� search methods are still not powerful enough� Problem domains with
nontrivial optimization functions� large problems� short computation time limits�
partial constraint satisfaction� dynamic constraint satisfaction and only limited
demands on optimality are promising candidates for local search�

Local search approaches perform a search by iteratively changing an initial as�
signment of variables� In each iteration� a neighborhood of potential successor states
is generated� The quality of the neighborhood states can be computed by a cost

function� This information is used by the successor choice criterion to determine
the successor state�

Conventional ways of using local search are di�cult to generalize� Increased
e�ciency is the only goal� generality often being disregarded� It is quite common
to de�ne highly sophisticated and problem�tailored representations with special�
ized neighborhoods and successor selection methods �see 	Aarts��
 for examples��
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From a software engineering point of view� this is not a good idea� Integrating com�
plex� heterogeneous problems in a monolithic system hinders the system�s reuse�
extension and modi�cation�

Other approaches take the general constraint programming framework as start�
ing point and try to introduce local search methods for constraint satisfaction�
Problems are formulated in a framework of variables� domains and constraints� A
constraint satisfaction problem �CSP� consists of

� a set of variables x � fx�� � � � � xng�
� where each variable is associated with a domain d�� ���� dn
� and a set of constraints c � fc�� ���� cmg over these variables�

The domains can be symbols as well as numbers� continuous or discrete �e�g��
door�� ���� ������ Constraints are relations between variables �e�g�� xa is a
friend of xb�� xa � xb � xc�� that restrict the possible value assignments� Con�
straint satisfaction is the search for a variable assignment that satis�es the given
constraints� Constraint optimization requires an additional function that assigns a
quality value to a solution and tries to �nd a solution that maximizes this value�
Through the use of CSP formulations� local search acquires a general application�
independent framework�

CSP formulations used with local search approaches typically involve only very
basic constraint types� e�g�� linear inequalities or binary constraints� The problem
with this kind of formulation is that the inherent problem structure is mostly lost
by the necessary translation of the problem to this low�level formulation� Domain�
speci�c knowledge about appropriate representations and search control is only
available at a higher level and cannot be used� Consequently� these methods fre�
quently fail because they have only a very limited view of the unknown search�space
structure�

This paper attempts to overcome the drawbacks of these two local search ap�
proaches � monolithic problem�tailored and general low�level � by using global
constraints� The use of global constraints for local search allows us to revise a cur�
rent state on a more global level with domain�speci�c knowledge� while preserving
features like reusability and maintenance� The proposed strategy is demonstrated
on a dynamic job�shop scheduling problem�

Local search techniques provide a solution at any time� the quality of the solu�
tion being subject to constant improvement� This anytime feature makes it worth�
while evaluating the whole solution process� not just the �nal result� To have
a measure for the utility of intermediate states as well� we can extend the CSP
formulation to weighted CSPs �WCSPs�� In WCSPs� constraints have associated
costs� which are dependent on the constraint variables� assignments� The goal is
to minimize the total sum of costs�� which provides us with a useful cost function
for local search� A value of zero for the costs means total satisfaction� The graded
consistency measure makes it possible to extend the applicability of the concept to
over�constrained systems and real�time reasoning�

�� Global Constraints

Constraint satisfaction has traditionally been tackled by re�nement search �do�
main�reduction techniques�� which faced similar problems of exploiting high�level
knowledge� The success of commercial tools like the ILOG Scheduler 	LeP��
 can

�The term inconsistency is used below as a synonym for costs�
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be ascribed mainly to their use of so�called global constraints� R�egin 	R�eg��
 de�
�nes a global constraint as a substitute for a set of lower�level constraints� such
that a more powerful domain�reduction algorithm can be applied� Using global
constraints� constraint solvers can attain an enormous speedup and real�world ap�
plication requirements can be satis�ed�

For example� the alldifferent�V� constraint is a global constraint that forces
all included variables of the set V to take di�erent values� A formulation by lower�
level constraints would include inequality constraints for all possible variable pairs
of the set V� But the application of the global constraint with a speci�c data repre�
sentation and satisfaction methods can yield much better performance �e�g�� by a
demon�observed array representation 	PL�	
��

The notion of global constraints can support local search approaches as well�
It is transferred to a local search context in the following subsections�

���� Global Constraints from a Local Search Perspective� The central
issue in local search is the transition from one state to the successor state� As it is
uncertain what kind of change improves a current state� lots of neighbor states are
usually analyzed� There are no general rules here� the kind of neighborhood and
successor selection being a heuristic matter�

The term heuristic already implies the existence of some domain knowledge

for guidance� The heuristics of conventional local search mechanisms for CSPs�
like GSAT 	Gu��
 SLM��
� can only exploit knowledge about their representa�
tion�s special low�level structure� thus having to cope with self�produced compli�
cations instead of being able to incorporate higher�level domain knowledge� It is
well known that there is a strong relation between a problem�s representation and
its computability� and it remains unclear to what kind of problems these low�level
standardized representation approaches are suited� Consequently� there is often not
enough information locally available to direct the search 	MJPL��
� Larger vari�
able domains than the binary ones normally used exacerbate the problem because
information about qualitative di�erences is not directly available�

The concept of global constraints can help remedy this situation� To this end�
we have to extend the notion of a global constraint�

A global constraint is a substitute for a set of lower�level con�
straints� additional domain knowledge allowing the application of
specialized data representations and algorithms to guide and ac�
celerate search�

A global constraint must feature a start function to construct its initial struc�
tures and inconsistency� an improvement procedure for determining a promising
successor state� and an update function for its internal structures and the con�
straint�s cost contribution in case of variable changes�

Heuristics for building neighbors and for selecting a successor can be directly
encapsulated in the global constraints� where the appropriate domain knowledge
is available� This is illustrated in the following sections using an example of a
global constraint Permutation� The global constraint Permutation�A� X� has
to ensure that the variables of set X are a permutation of the values of bag A� The
costs of the constraint are to be determined by the minimal sum of the distances
of the variables� current values to a valid assignment�
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���� Internal Structures� Many successful applications of local search gain
their power from sophisticated updates of the inconsistency information rather than
from recomputations from scratch� For this purpose� additional structures often
have to be maintained� In the case of the Permutation constraint� three lists can
be used as additional support structures� list la with the ordered values of bag A�
list lx with the variables of X ordered by their current assignments� and list lc with
the ith element being the distance between the ith value of la and the value of the
ith variable of lx� The costs of the Permutation constraint can be computed by
summing the values of lc�

For Permutation���� �� �� 	
� fa� b� c� dg� and a current assignment of
A��� B��� C�� and D��� the structures are constructed in the following way�

la � 	�� �� �� �


lx � 	A���� C���� B���� D���


lc � 	j�� �j � �� j�� �j � �� j�� �j � �� j�� �j � �


Permutationcosts � �� �� � � � � �

Note that by changing a variable all global constraints involving this variable
must be called to update their internal structures� For the Permutation con�
straint� there must be a reordering of the variable in lx with a corresponding update
of lc and the resulting cost sum� For example� if B changes from � to ��

la � 	�� �� �� �


lx � 	A���� C���� D���� B�	�


lc � 	�� �� j�� �j � �� j�� �j � �


Permutationcosts � � � ��� � �� � ��� � �� � �

���� Improvement Heuristics� What is a good heuristic for building the
successor state may depend on the other constraints involved as well as on the
current state of the search� Thus� a global constraint should provide various heuris�
tics� e�g�� one with a complete revision of the violated variables� one with a minimal
change of just one variable� one with a randomized successor selection� and one
with random walks�

For the Permutation constraint� the list lc gives us quanti�ed information
about the variables� violation of the constraint� A heuristic with a cautious strategy
can reset only one variable � according to the highest element in lc � to the
corresponding value of la� Following the last assignment of A��� B��� C�� and
D��� the variable D would be changed to ��

lc � 	�� �� �� �


la � 	�� �� �� �


lx � 	A���� C���� D���� B�	�


Permutationcosts � � � ��� � �� � �

The range of heuristics to be applied to a speci�c problem should be customiz�
able by the user� During search� a constraint�internal function has to decide on
the concrete heuristic to be applied� This decision can be taken at random� be
dependent on the current search state� or be subject to learning mechanisms�
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�� Granularity

If the Permutation constraint is to be modeled by low�level constraints� linear
inequalities can be used� A particular problem� e�g�� Permutation���� �� �� 	
�
fa� b� c� dg�� can be expressed by the following CSP�

A�B�C�D � f�� �� �� �g

�n � f�� �� �� �g � An� Bn� Cn� Dn � f�� �g

A � A� � ��A� � ��A� � ��A� C � C� � �� C� � �� C� � �� C�

B � B� � ��B� � ��B� � ��B� D � D� � ��D� � ��D� � ��D�

A� �A� �A� �A� � � C� � C� � C� � C� � �

B� �B� �B� �B� � � D� �D� �D� �D� � �

A� �B� � C� �D� � � A� �B� � C� �D� � �

A� �B� � C� �D� � � A� �B� � C� �D� � �

The permutation problem is very hard to recognize now� And not even the
global constraint�s distance measure is included in the upper solution� In contrast
to the low�level formulation� the statement of a global Permutation constraint is
highly declarative and easy to understand�

A local search method that is based on a low�level problem representation
cannot make use of domain knowledge and is not able to recognize the low�level
constraints� interactions� e�g�� that it is inadvisable to compensate a change from
A� � � to A� � � with respect to the constraint A � ��� by an activation of
A� � � and A� � � in order to keep the constraint satis�ed� The lack of a general
overview and of heuristic knowledge makes the low�level approach less e�cient and
susceptible to cycling and getting stuck in local minima�

A low�level representation also has advantages� though� A wide variety of prob�
lems can be modeled using the general low�level representation� whereas modeling
using global constraints presupposes the availability of suitable global constraints�
For example� if the problem is to �nd an assignment such that the variables of set
X are a permutation of a subset of the values of bag A� the low�level representation
can easily be adapted� But a solution based on the global Permutation constraint
would require a considerable e�ort to adapt the constraint�s internal structures and
heuristics� if not a redesign from scratch��

A comparison of global constraints and monolithic solutions is straightforward�
regarding the global constraints as a low�level representation and the monolithic
solutions as a single highly global constraint� Again� the higher�level �monolithic�
system is faster as it makes better improvement decisions because of its superior
overview� but it is di�cult to reuse because of its specialization�

Global constraints are a compromise between the generality of low�level CSP�
based local search and the e�ciency of monolithic problem�tailored local search
encodings �see Fig� ��� Finding the right granularity for global constraints is up to

�However� all low�level constraints could be realized by global constraints as well� enabling
the user to model the problem by these constraints if no high�level constraint is available
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the designer� Only very general rules apply� which are comparable to the problems
of object�oriented design �see 	GHJV�	
 for a discussion and general guidelines��

CSP Encoding
Global Constraints

Tailored Solution
Monolithic Problem-Low-Level

Generality

Efficiency

Figure �� Global Constraints as a Compromise

�� Global Search Control

As described above� global constraints have integrated heuristics to enable them
to choose a successor state on their own� On top of the constraints� there must be
a mechanism that combines the constraints� cost contributions to the overall cost
function and a regulation determining which constraint is allowed to select the
successor state for a current iteration� This is the job of the global search control�
The components� interplay is outlined in Figure ��

Update

Variable

Linking

...

...

Selection of Heuristic

Global Constraint

Heuristic
Improvement

Heuristic
Improvement

Update Functions

...
Heuristic

Improvement
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Figure �� Local Search with Global Constraints

The global search control serves as a general manager� where variables and
constraints can dock on and o� in a plug�and�play manner� This provides a simple
mechanism for tackling problems with dynamic changes� For an addition of a new
variable� the variable to be added must already be instantiated� For an addition
of a constraint� the constraint�s inclusion of a variable must be announced to the
variable to allow the constraint�s updating in the case of value changes�
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For the overall cost function� which is handled by the global search control�
problem�speci�c coe�cients can be introduced to weight the constraints� subjective
costs� as a constraint�s importance may be di�erent in di�erent contexts �see also
Section �����

Conventional local search methods make a successor decision on the basis of
a calculation of the neighborhood states� costs� These calculations might be quite
costly to compute within the global constraint framework� but the current con�
straints� costs can serve as an excellent compensation for this� As the goal is to
minimize the constraints� costs and as the global constraints should know how to re�
solve the con�icts by themselves� it is a straightforward matter to select constraints
according to their current inconsistency�

The selection of the global constraint that is to improve the current state can
be enhanced by various meta�heuristics to avoid local minima and plateaus� ranging
from a simple random choice of unsatis�ed constraints to more elaborate techniques
including learning� tabu lists� etc� Some of these are demonstrated in the following
section�s case study� The global search control module should support a variety of
methods that can be applied in a user�speci�ed way �as in the �exible blackbox
system 	KS��
�� By integrating global search�state parameters for the constraints�
improvement procedures� e�g�� a simulated�annealing�like temperature� an anytime
improvement depending on the current search situation can be achieved� In ad�
dition� it is possible to introduce higher�level coordination mechanisms between
constraints to minimize violations of multi�constraint variables� If knowledge is
available about these interface areas� it may be su�cient to introduce redundant
global constraints to cover these areas� Nevertheless� the overhead of coordination
mechanisms may pay o� in some cases�

	� A Case Study� Dynamic JobShop Scheduling

As an example of the application of local search with global constraints� we
look at the dynamic job�shop scheduling problem�

The problem of solving standard job�shop scheduling by local search has been
addressed in numerous research papers �see 	VAL��
 for a survey�� but there are
few experiments dealing with a partial satisfaction�infeasible state neighborhood�
Experiments including dynamic aspects of job addition�removal are also rare� This
is a pity since dynamics and partial satisfaction are very realistic problem features
and local search approaches can bring their advantages to bear in these domains
particularly� Unlike re�nement�global search� local search is not normally a�ected
by modi�cations of the search space because of its local focus� and it supports
integration of partial satisfaction because it has an inherent cost function that is
iteratively improved toward full satisfaction�optimization�

As in traditional n�m job�shop scheduling� there are n jobs in a schedule� each
of them having m tasks with �xed durations� All tasks of a job are connected via
m � � linear distance inequalities involving start or end time points of two tasks�
For compliance with the scheduling horizon h� there is in addition a linear distance
inequality taskend � h for each task� Each task has to be processed on a speci�c
machine� and each of the o machines can process only one task at a time� Every
p microseconds of computation time� one job is removed from the schedule and a
new job must be added� The tasks of the new job are randomly distributed within
the scheduling horizon�
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The goal is to �nd a concrete begin�end for all currently active tasks� such
that the inconsistency of the constraints is as low as possible� To compare di�erent
algorithms� the inconsistency can be displayed over time �see Fig� �� peaks occur
on job removal�addition� and the average inconsistency can be computed�
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Figure 	� A Test Run Example

The measurement of inconsistency is done in the following way�

� For each discrete point of time from � to h on each machine� the number of

assigned tasks �� is added to the inconsistency if there is an assignment of
more than one task�

� For each linear distance inequality that is unsatis�ed� the minimal shift

distance for one of the inequality variables required to satisfy the inequality
is added to the inconsistency�

The initial state for the test runs is computed by the iterative addition of n
jobs� with p microseconds of computation time between each addition� which is
used for improvement iterations�

The following parameters were used for the test runs throughout our experi�
ments� The tasks� duration is ��� plus a random value of ��� to ����� �� of
a job�s tasks require the same machine as another of the job�s tasks� The jobs�
inequalities consist of �� equations and !� real inequalities� The inequalities
involve a shift constant� which is ��� plus a random value of ��� to �����

	��� Realization� The dynamic job�shop scheduling problem was encoded ac�
cording to the global constraint concept�� There are two types of global constraints�

� Action Resource Constraints �ARCs� for the nonoverlap of tasks that
require the same machine

� Task Constraints �TCs� for the temporal ordering relations between tasks
within a job

Decomposition into these types of constraints is done because of the strong de�
pendencies among the variables for each constraint and the manifold reuse possibil�
ities� Resource constraints that hinder a temporal overlap of activities�assignments
are needed in many applications� e�g�� to model the availability of a person� a room
or a machine� and the TC�s temporal relations of tasks�activities are needed in
nearly every system that involves temporal reasoning� Another application of the
ARCs and TCs can be found in the Excalibur agent�s planning system 	Nar��
�

�The implementation was done in ObjectC�
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������ Global Action Resource Constraints� An ARC is connected to a set of
pairs P and two variables c and h� A pair of the set P � �si� ei�� represents a task
i that uses the machine�resource� The starting time of a task i is represented
by the variable si and the end of the task by the variable ei� The ARC�s role
is to prevent overlapping tasks� For each discrete point of time from c to h� the
number of assigned tasks �� is added to the constraint�s inconsistency if there is
an assignment of more than one task at this time point� The constraint can a�ect
the tasks� temporal distribution by changing the variables si�ei�

An ARC�s basic internal structures are a set of task objects and a multiple�
linked list of temporal intervals� A task object contains references to the start
variable� the end variable and its intervals� The intervals split the time from c to
h into maximal parts such that each interval has the same task assignment for its
duration �see Fig� ��� Task overlaps are mapped to the intervals� and the inconsis�
tency of an interval is computed by the overlaps multiplied by the interval�s length�
Links to an interval�s task objects are also stored� The ARC�s total inconsistency
is the sum of the intervals� inconsistencies�
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Figure �� An ARC�s Internal Structures

The ARC�s basic heuristic �ARC�H�� selects an inconsistent interval �i�� see
selection a� of Figure �� with a choice probability for an interval that is propor�
tional to the interval�s inconsistency� For example� if the intervals A to E have
inconsistencies of Acosts � ��� Bcosts � ��� Ccosts � ��� Dcosts � � and Ecosts � ��
the chance of being chosen is ���! for A� ���� for B� ���! for C� � for D
and ���� for E�

Then� one of the interval�s tasks �t�� is chosen at random� The task�s start
variable is shifted to the beginning of an interval i�� a choice probability for the
interval being proportional to its length times its task�number improvement with
respect to the interval i�� Only intervals with fewer tasks than the i� interval�s
�without the task t�� are considered for this decision� and the maximal length of
intervals considered for the multiplication is that of the task t��

������ Global Task Constraints� A task constraint manages a set of temporal
relations between a job�s tasks �see Fig� ��� Each relation involves links to two
decision variables V� and V�� a constant c and a comparator �� � f���� �g� such
that V� �� V� � c� The inconsistency of a relation is given by the minimal shift
distance for one of the variables required to satisfy the relation� The TC�s total
inconsistency is the sum of the relations� inconsistencies�
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Figure � The ARC�H� Heuristic
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The basic improvement heuristic of the task constraint �TC�H�� selects an
inconsistent relation with a choice probability for a relation that is proportional to
its inconsistency �see Fig� ��� One of the involved variables is selected randomly�
and a minimal shift of this variable is performed such that the relation is ful�lled�

	��� Results� Figure ! shows experiments with di�erent horizons� The global
search control selects a constraint with a probability proportional to the constraint�s
costs� The schedule always contains �� jobs �� �� TCs�� each of them with �ve
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tasks� and there are �ve machines �� � ARCs�� Every tenth of a second there is a
job removal�addition��

According to a computation using re�nement�global search by the ConPlan sys�
tem 	Gol��
� the minimal horizon for a maximal consistent solution varies around
������ depending on the currently active jobs
� With a horizon of ������ the topol�
ogy of the search space is so �at that any improvement e�ect is close to pure noise�
A more complete picture is given in Fig� �� One point represents the inconsistency
averaged over �� seconds of runtime�

In order to study the search behavior until complete satisfaction was achieved�
no job removal�addition was done for the rest of the experiments� There are ��
jobs �� �� TCs� with �� tasks� �� machines �� �� ARCs� and a horizon of ������
The start inconsistency is about �������

	��� Constraint Weights� The weights of the constraints� subjective costs
for the overall cost function have so far been set to one� Looking at the individual
constraints� cost development for a test run �Figure ��� may give the impression
that this is not the best choice� Better weightings could restructure the search
space and ensure that the inconsistency of possibly more critical constraints plays
a more important role and that these constraints are chosen more often to execute
improvement changes�

�Although there is an enormous variety of possible problem con�gurations� the results are
presented for just one problem instance �given as the average of ����� test runs if not otherwise
stated�� Comparable results were obtained with other instances�

�A performance comparison with the ConPlan system involving the dynamics was not pos�
sible as a tenth of a second was not even enough to set up the constraints�
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Figure �� shows that this is not the case� The weights for the ARC and TC
constraints� costs are given after the colons�� A stronger weighting of the ARCs has
a negative e�ect� whereas higher weights for the TCs neither worsen nor improve
the search behavior�

�To be able to better compare the di�erently weighted inconsistencies� the results are pre�
sented by displaying the inconsistencies with constraint weights of one� As the line patterns are
sometimes di�cult to recognize� the legends list the curves in the lines� order from top to bottom�



USING GLOBAL CONSTRAINTS FOR LOCAL SEARCH ��

Action Resource Constraints

Task Constraints

2

4

6

0

1000

2000

3000

4000

5000

6000

7000

8000

Time (sec)

Inconsistency

Figure ��� Cost Distribution for a Single Test Run

�� Susceptibility to Local Minima and Plateaus

Unlike low�level CSP�based representations� global constraints enable the search
to be conducted in a more informed way� A measure for this is the susceptibility to
getting caught in local minima and on plateaus� This is investigated in the following
subsections�

���� Randomization� The previous test runs had randomization at all choice
options� This is a common technique to leave local minima and plateaus� However�
randomization need not always have a positive e�ect� Figure �� shows choice vari�
ants� where N means choosing the subject with the highest inconsistency� and R

means a choice with a probability of a subject�s being chosen that is proportional
to the subject�s inconsistency� The letters g� m and t indicate the choice points�
g the global search control�s constraint selection� m the �rst interval choice of the
ARCs� improvement heuristic �see Fig� ��� and t the relation choice of the TCs�
improvement heuristic �see Fig� ���

For the �rst phase �Fig� ��� top graph� of the search� the quality of the strate�
gies can be more or less ordered according to their amount of randomization� the
nonrandomized NgNmNt version clearly being the best� The superiority of nonran�
domized strategies is not surprising� as local minima and plateaus are less probable
in the early phase� The Ng component has the most important impact� Strategies
with an Rg component are nearly always worse� even in the later phases of the
search �middle and bottom graphs��
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Figure ��� Variation of Weights

As the search proceeds� the Rm component becomes more important� indicat�
ing that the ARC�s heuristic no longer always makes the right decisions� Shortly
after� the Rt component acquires some in�uence as well� making NgRmRt the �rst
to converge to a complete satisfaction� followed by the nonrandomized NgNmNt�
RgNmNt is the third to achieve complete satisfaction� only a little before NgRmNt�

In general� nonrandomization seems to be best for the g decision� whereas
randomization of m and t depends on the available computation time� The ran�
domization of m is much more important than that of t� which indicates that the
ARC�s heuristic is not very powerful�

One should be careful with anytime switching between variants for di�erent
search phases based on the graphs of the individual variants� The switch to a
variant with the steepest descent for an actual inconsistency does not necessarily
represent the optimal behavior� because each variant has a di�erent search history
and may require structurally very di�erent areas of the search space in order to
advance� A prognosis of the behavior of switching strategies is further complicated
by the dynamics of the dynamic job�shop scheduling problem�
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Figure ��� Randomization Variants
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���� Random Walks� Random walks are random moves in the search space
that disregard the change of the cost function value� The idea is that the search
is retracted from hopeless situations �like local minima� from time to time� Unlike
restarts� random walks remain within the area of the current state�

Random walks can be included by introducing a second improvement heuristic
for each constraint that makes a random variation of a random variable� Figure ��
shows the results for di�erent probabilities for the random variation heuristics to
be chosen� It is obvious that the random walks generally cause a deterioration in
the results� At no point is there a cross�over� the more random walks� the more
inconsistency�
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Figure �	� Random Walks

���� Tabu Lists� Figure �� shows experiments using a tabu list for the global
search control�s constraint selection �based on tabu search 	Glo��
�� Each selected
constraint is stored in a �rst�in��rst�out list and blocked for another selection as
long as it is a member of the list�

Applying tabu lists proves absolutely pointless� Even for the nonrandomized
NgNmNt version� it makes no di�erence �results for other randomization variants
are similar��

�� Extending the Constraints

The constraints� improvement heuristics can be created in various ways� The
e�ect of heuristics with stronger domain knowledge and the inclusion of more ag�
gressive heuristics are studied in the following subsections�

���� More Knowledge� The experiments in Section ��� showed that the
ARC�s heuristic is not very powerful� It would therefore seem advisable to con�
sider other heuristics� For example� tasks should obviously be packed quite tightly
on a machine� The following ARC�H� heuristic supports this feature� ARC�H�
is very similar to ARC�H�� but it makes the selection of the second interval in a
di�erent way� for the new position of the task� only two shifts are possible� the task
either beginning at the beginning of the task�s predecessor interval or ending at the
end of the task�s successor interval� The interval with less tasks is chosen�
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The impact of the new heuristic is impressive� The best results are obtained
using a probability of about �� for the ARC�H� heuristic to be chosen� and �� 
for the ARC�H� heuristic �see Fig� ���� Choosing the ARC�H� heuristic more often
causes a deterioration in the results�
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Figure �� Introduction of the New ARC�s Heuristic

Figure �� shows the impact of randomization� indicating the �rst interval�s
selection of the ARC�H� heuristic by the letter s �always with a probability of �� 
for the ARC�H� heuristic to be chosen�� The addition of domain knowledge by
the new heuristic strongly reduced the e�ect of randomization compared to that in
Section ����

���� Aggressive Heuristics� The task constraint can also be extended� The
current heuristic is very cautious� changing just one variable� After a couple of
changes of task positions within a job� it may be useful to make a complete revision
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Figure ��� Randomization with the New ARC�s Heuristic

of the internal distance relations instead of repairing only one relation� A more ag�
gressive heuristic can add to the former heuristic a recursive repair of all relations
of the constraint whose inconsistency has been changed by the improvement �con�
sidering only variables that have not already been changed within the improvement
step��

The e�ect is disappointing �Figure ��� using only the old ARC�H� heuristic for
the ARCs�� Even a slight deterioration in the results is caused by activating the
task constraint�s new heuristic�
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Figure ��� Introduction of the New TC�s Heuristic

Cautious heuristics are often more appropriate than highly aggressive ones�
the synthesis with other problem aspects being promoted by only slight changes of
multi�constraint variables�
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�� Related Work and Conclusion

Many publications focus on problem�speci�c local search solutions� Improved
e�ciency is the main goal� generality often being disregarded� This paper has
demonstrated a way of combining local search with the constraint programming
framework� The modular structure of the constraints makes it easy to vary� reuse

and extend problem descriptions�
Other authors have tackled the problem of combining local search with search

frameworks on a more general level� too� This includes work on Boolean satis�abil�
ity problems like GSAT 	Gu��
 SLM��
 and Walksat 	SKC��
� the processing of
linear pseudo�Boolean constraint problems 	Wal��
� and approaches for CSPs like
coalition forming 	HT�	
 and the well�known min�con�icts heuristic 	MJPL��

with its extension and generalization by genet 	DTWZ��
� The most impor�
tant di�erence between our work and these approaches is the ability of the global
constraints to exploit domain�speci�c information by including constraint�speci�c
search control and representation knowledge� In contrast to low�level constraint pro�
gramming approaches� which correspond rather to SAT� or OR�based approaches�
the use of higher�level constraints is more in keeping with the basic intentions of
constraint programming� Fine�grained constraints allow a wide application range�
but the low�level problem decomposition also deprives the search process of most
of the domain�speci�c knowledge�

The results of the presented case study indicate that the global constraint
approach�s revision of a current state on a more global level with an inclusion of

domain�speci�c knowledge makes the search quite resistant to getting caught in
local optima or on plateaus� Techniques to escape from local optima and plateaus�
like random walks or tabu lists� either worsened or failed to improve the search
behavior� The only useful technique was randomization� though this was true for
some decision points only� the advantage decreasing with the inclusion of stronger
knowledge�

The concept of global constraints was originally used for re�nement search �e�g��
	LeP��
 PL�	
�� Transferring it to a local search context makes it possible to get
an e�cient and declarative handle on local search� while preserving features like
reusability and maintenance�

Further work will include concepts to temporally focus the search on speci�c
problem aspects and methods to apply case�based reasoning within global con�
straints� More detailed information on the Excalibur project is available at�

http���www�ai�center�com�projects�excalibur�
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