
58 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 59 more queue: www.acmqueue.com

Smarter games are

making for a better user experience.

What does the future hold?

58 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 59 more queue: www.acmqueue.com

If you’ve been following the game development scene,
you’ve probably heard many remarks such as: “The main
role of graphics in computer games will soon be over;
artifi cial intelligence is the next big thing!” Although you
should hardly buy into such statements, there is some
truth in them. The quality of AI (artifi cial intelligence)
is a high-ranking feature for game fans in making their
purchase decisions and an area with incredible potential
to increase players’ immersion and fun.

If you’ve ever studied AI, however, you likely paint
yourself a misleading picture of the AI methods used in
games. Game AI has hardly anything to do with what
is called artifi cial intelligence in academia. After a brief
discussion of the role of AI in game development, I will
provide an overview of the current state of the art, discuss

the future of this game development area, and provide
some links to further information.

THE ROLE OF AI DEVELOPMENT IN GAMES
Let’s begin with the general set-up of AI development in
games. The rampant progress of technology makes nearly
every game a new beginning. Even though some basics
of the game engine will probably stay the same during
a game’s development, constant feature and schedule
revisions will make creating a subsystem such as AI
something like shooting at a quickly moving target. AI is
very dependent on concrete details of the game environ-
ment, which is the main reason why it’s often added as
one of the last subsystems. In fact, early tech demos rarely
feature it.

A in
Computer
GamesI

ALEXANDER NAREYEK, GUEST RESEARCHER, CARNEGIE MELLON UNIVERSITY

Game
DevelopmentFO

CU
S

60 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 61 more queue: www.acmqueue.com

There are other reasons why AI is usually shifted to the
end of the development process: Customers value great
AI, and bad AI behavior can lead to negative reviews in
the media. A game has to generate money in the end,
however, and AI simply does not have the highest prior-
ity from a marketing point of view. Humans are very
visual animals, and a beautiful sunset is much easier to
sell than any particularly clever reasoning capabilities of
an opponent.

In addition, early milestone demonstrations for the
publisher, press presentations, and other hype-gener-
ating events do not promote inclusion of a globally/
consistently good AI, but instead focus on one or two
“absolutely unexpected but genius outcomes of revolu-
tionary new and complex AI procedures” (did you spot
the ironic tone?) that provide the necessary “wows.”
Although long-term fun with the game certainly is
important as well, market mechanisms will make it very
diffi cult for AI to receive equal ranking with features such
as graphics and physics. Things might get even more
diffi cult if the games market should fi nally turn into a
real mass market. Markets such as persistent online game
worlds, on the other hand, may increasingly promote a
focus on consistently good AI because players continu-
ously evaluate these games, gaining much more insight
on mechanics, and they can continuously decide to pay
or quit.

Surveys indicate that the percentage of CPU (central
processing unit) cycles that developers are allowed to
burn on AI computations is steadily growing. This might

be because the speed of graphics cards has been increas-
ing much faster than that of the CPU, which frees up lots
of resources. Anyway, these additional resources are much
needed for AI computations and open up many possibili-
ties for more sophisticated AI.

GETTING TECHNICAL
AI techniques can be applied to a variety of tasks in mod-
ern computer games. A game using probabilistic networks
to predict the player’s next move in order to precompute
graphics may be on a high AI level. Although AI must
not always be personifi ed, the notion of AI in computer
games is primarily related to guiding nonplayer characters
(NPCs).

But how does the player of a computer game perceive
the intelligence of an NPC? This affects features well
beyond obvious issues such as goal-related behavior.
Important dimensions also include physical characteris-
tics, language cues, and social skills. For example, a good-
looking and sympathetic NPC is likely to be considered
more intelligent. I will, however, focus in the following
discussion on “core AI”—computing an NPC’s actions. In
many cases, developers also subsume collision detection
under AI. (In my opinion, this is the responsibility of the
physics engine, so I will not cover that topic here.)

I should mention that the goal in game AI is not to
compute the most optimal behavior for winning against
the player. Instead, the outcome should be as believable
and fun as possible. Measures such as cheating are abso-
lutely acceptable as long as the “suspension of disbelief”
is retained. It does not really matter if real insight is
behind the characters’ actions. In many cases, too much
autonomy and unpredictability are, in fact, undesirable:
Who guarantees that the result is enjoyable? And you will
most likely have a hard time selling highly unpredictable
outcomes to your quality assurance (QA) department.
Movement: Pathfi nding and Steering. NPCs have to
move through the environment in an intelligent way—
that is, not getting stuck by trees in their way, taking a
possibly short route to the destination, and so forth. This

Game
DevelopmentFO

CU
S

AA in
Computer
GamesI

Artifi cial intelligence
 is very dependent on concrete details

of the game environment.

60 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 61 more queue: www.acmqueue.com

is one of the basics of game AI, and you would expect
that this be properly solved in today’s games. Not quite
so, however. Though the major part of AI-development
resources go into this area, its lack of quality is one of the
top complaints. You might blame this on game develop-
ers assigned to this task who lack suffi cient knowledge
about AI, but the main reason is this: Given the highly
limited computational resources, a sophisticated move-
ment is a really hard thing to do! Add to this features
such as complex environments with complicated terrain,
dozens or hundreds of units for which this has to be
computed in parallel, dynamically transformable terrain,
and so on.

The so-called A* algorithm is the most common basic
ingredient for computing a long-distance route for an
NPC. The most suitable variant of this approach depends
very much on the specifi cs of the game environment. The
gaming literature is full of articles on this topic, and it is
sometimes hard to maintain a perspective. Besides the
general approach, it is also important to pay attention to
implementation details, such as clever memory manage-
ment. I will describe the basics of the A* algorithm here
to give you an idea of the general approach.

The algorithm requires a defi nition of waypoints and
their connections for a specifi c map/environment. For
example, two rooms can have waypoints in their respec-
tive middles, and these waypoints are connected because
it is easy to reach one room from the other via a passage.
The waypoints with their connections span a net over
the map, defi ning which regions/points can be directly
reached from other regions/points. Given a starting point
and a destination, the A* algorithm tries to fi nd the
shortest path along the waypoint connections. It stepwise
explores the waypoints in increasing distance from the
starting point along the possible connections until the
destination waypoint is reached. The algorithm uses an
estimation component, which has to provide an estimate
for the distance between a point and the destination
point. Thereby, the algorithm can focus its expansion of a
possible path on the most promising connections.

In many cases, a game applies pathfi nding techniques
at multiple granularity levels. For example, for long dis-
tances, a path of high granularity is computed fi rst, and
then the paths between the selected waypoints are com-
puted with fi ner granularity. You can probably imagine
how complicated things get with dynamically changeable
terrain and so on.

To maneuver between connected waypoints, the game
applies so-called steering methods. Obstacle avoidance,
coordinated formation movement with team/group units,

etc. are handled at this level (see fi gure 1).
Steering methods do not strive for a globally optimal

behavior but compute an NPC’s movements from a very
limited perspective. In most cases, a vector with direction
and speed/force is computed for each movement-relevant
aspect, and these vectors are then combined to a single
fi nal vector. For example, one vector is directed toward
the NPC’s next waypoint, and an additional vector for
each nearby obstacle along the way points orthogonally
away from this obstacle. The vectors could be combined
by a simple addition of all vectors, which produces a
result vector that’s then interpreted as acceleration and
turn preferences. This is a simple example, but may give
you an idea of how the process works.

Team and formation movement can be incorporated
in a similar way. For example, a general movement vec-
tor per team is introduced, which is combined into each
team member’s vector set, as well as a vector for each
member that points toward the preferred position within
the team. In many games and movies, fl ocking birds or
fi shes in the background are also realized by techniques
such as these.
Finite State Machines and Decision Trees. FSMs (fi nite
state machines) describe under which events/conditions
a current state is to be replaced by another—for example,
switching from an attack mode to an escape mode if the
NPC is hit. It is mostly only a design concept—that is, the
game has no general FSM interpreter, but the FSMs are
realized by scripts and simple if-then statements.

obstacle

NPC

FIG 1FIG 1

62 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 63 more queue: www.acmqueue.com

Figure 2 shows an example of an FSM. The boxes
represent states, which involve specifi c scripts, animation
schemes, etc. The starting state is “searching for player.”
The arrows show conditions under which the state of the
NPC is changed, such as an incoming event when the
player is sighted.

An FSM is a simple and powerful tool for modeling an
NPC’s behavior. There are extensions to cope with more
complex behaviors, such as hierarchical FSMs, as well as
nondeterministic variants to introduce random elements.

Decision trees conceptually are even slightly simpler
than FSMs and represent branching structures that are
often used to make high-
level strategic decisions–for
example, if a computer-
guided opponent in a strat-
egy game should prepare
an attack or concentrate
on resource gathering. The
nodes in the tree are test
conditions, which lead
to different sub-trees. A
fi nal leaf node contains a
resulting decision. Similar
to FSMs, decision trees are
conceptual tools and can be
realized by simple if-then
statements.
Other Approaches and
AI Research. Many other
techniques are applied
to realize game AI. These
include infl uence mapping,
which is a technique for
terrain analysis to iden-
tify boundaries of control
or otherwise interesting
points/areas/features of a
map; and level-of-detail
approaches for AI, which

deal with the fact that there’s not enough time avail-
able to compute AI details for every NPC and might, for
example, assign time for rougher reasoning only for NPCs
that are far away from the player.

Game AI spans a large array of tasks, and it is not easy
to generalize the various approaches. They are most often
highly tailored to the specifi c games and situations—for
example, an algorithm to determine from which direc-
tion an enemy settlement should get attacked in the
game Age of Mythology (Microsoft), or how a Counter-
Strike (Microsoft) bot realistically aims when throwing a
grenade. Most games feature powerful scripting languages

FIG 2

Game
DevelopmentFO

CU
S

AA in
Computer
GamesI

62 February 2004 QUEUE rants: feedback@acmqueue.com

A* is an improved version of Dijkstra’s shortest-path algo-
rithm.1,2 Though it can be used for a range of search prob-
lems, its primary application area is pathfi nding. For those of
you unfamiliar with the A* algorithm, here is a more detailed
explanation.

As explained in the accompanying article, the map is
represented by a set of location nodes/waypoints, some of
which have connections of certain distances. Given a start
node and a destination node, the algorithm has to fi nd the
shortest path between those two points.

The algorithm searches stepwise from the start node
toward the destination. The algorithm maintains two lists:
open and closed. The open list contains all new nodes that
could be visited in the next step from the already-visited
nodes. The closed list contains all nodes that were already
visited. The open list is initialized with the start node. The
algorithm has found the shortest path once the destination
node is added to the open list. The closed list starts empty.

The nodes of the open list are ranked according to the
formula f(n) = g(n) + h(n) where g(n) is the shortest distance
along the already-visited connections from the start node to
node n; and h(n) is an estimate of the remaining distance
from node n to the destina-
tion node. It is important
that the estimate is lower
than or equal to the actual
shortest distance along
possible connections.

In each step of the
algorithm, the node with the
smallest f(n) is selected from
the open list and moved
to the closed list. All nodes
that can be reached by a
direct connection from the
selected node and are not
in the closed list—that is,
they have not been visited
before—are processed in the
following way: If the node is
not already in the open list,
it is put there. If it is already
in the open list, its f(n) needs
to be recalculated. Figure
1 visualizes one step of the
algorithm.

After the destination node has been reached, the actual
path can be computed backward from the destination. To
know which predecessor nodes to select from the closed list
for chaining back to the start, a parent node is remembered
for each visited node during the search for the destination.
The parent of a node is the one that is selected when the
node is added to the open list (or the node is already in the
open list and a recalculation of f(n) yields a smaller value
than before).

A nice tutorial with more details can be found at the
Almanac of Policy Issues Web site.3

REFERENCES
1. Hart, P. E., Nilsson, N. J., and Raphael, B. A formal basis
for the heuristic determination of minimum-cost paths. IEEE
Transactions on Systems Science and Cybernetics 4, 2 (1968),
100–107.
2. Dijkstra, E. W. 1959. A note on two problems in connec-
tion with graphs. Numerische Mathematik 1 (1959), 269–271.
3. Lester, P. A* Pathfi nding for Beginners. Almanac of
Policy Issues: see http://www.policyalmanac.org/games/
aStarTutorial.htm.

One Step of the A* Algorithm
destination

h(n)

g(n)

start start

open list

closed list

open list

closed list

g(n)

smallest f(n)

smallest
f(n)

h(n)

destination

FIG 1

A* is an improved version of Dijkstra’s shortest-path algo-
rithm.
lems, its primary application area is pathfi nding. For those of
you unfamiliar with the A* algorithm, here is a more detailed
explanation.

represented by a set of location nodes/waypoints, some of

A*: The Tried and
Tested Solution for Pathfi nding

64 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 65 more queue: www.acmqueue.com

Game
DevelopmentFO

CU
S

that can produce individual AI behaviors also at a higher
level, and some games even make them available to the
players who can thereby rewrite parts of the AI. (For more
on this subject, see Phelps and Parks’ “Fun and Games
with Multi-Language Development” on page 46 of this
issue.)

I will not describe the previously mentioned
approaches in any more detail and instead recommend
the series AI Game Programming Wisdom1, 2 and Game Pro-
gramming Gems3, 4 for more comprehensive coverage.

AI approaches from academia, such as genetic algo-
rithms or neural networks, are hardly ever used in game
development. Such approaches are generally believed to
require too many resources for development, tuning, and
testing. The general approaches must be heavily modifi ed
and specialized for a specifi c game to get anything accept-
able; analyzing and understanding the reasons for the
resulting behavior is complicated; they are hard to test
thoroughly; and modifying them toward more enjoyable
behavior is everything but easy as well. So far, very few
games use academia-inspired technology, such as Crea-
tures (CyberLife Technologies, 2001) or Black and White
(Electronic Arts, 2001).

Unfortunately, AI research often focuses in a direc-
tion that is less useful for games. A* is the most successful
technique that AI research has come up with—and nearly
the only one applied in computer games. The research
community is nearly exclusively concerned with tun-
ing its approaches for computational effi ciency and does
not care about features such as dynamics, realtime, and
software-engineering-related properties.

Bridging the gap between academic AI research and its
distant cousin in the gaming world presents many chal-
lenges. The research domain continues to have reserva-
tions with respect to computer games as an application
area, but, hopefully, the growing economic importance of
the computer gaming fi eld will continue to weaken those
reservations. Games are slowly gaining respect in academ-
ics, and there are research groups being established now
(including my own) with more viable approaches that

focus on features that are more relevant in practice.
AI Integration. Central to the AI computation is not
only how actions are determined, but also which infor-
mation about the environment is available and how this
can be accessed. Accessing coordinates of pathfi nding
waypoints may not be highly problematic, but in many
cases there are complex interactions with the game
world/engine. For example, if an NPC’s FSM needs to
react with a transition to an event that the player gets
into the line of sight, will this line-of-sight condition be
queried each AI cycle by the FSM code, or will a specifi c
event callback be triggered by the game world? Can
answering multiples of such AI queries be delayed by the
game world and executed together to optimize processing
times? Does the AI part have its own memory, and, thus,
do changes only in the sensed data need to be provided?
Such questions must be answered while designing a game
AI, and the appropriate answers may even vary for its dif-
ferent sub-parts.

A problematic issue concerning AI integration is that
the kinds of interfaces used to and from AI components
are different from game to game, so far. The Artifi cial
Intelligence Interface Standards Workgroup was recently
formed to develop interface standards for basic game
AI functionality such as pathfi nding, steering, fi nite
state machines, rule-based systems, goal-oriented action
planning, and world interfacing. Hopefully, standard-
ized interfaces will promote the reuse of AI components,
unburdening game AI developers from worrying about
low-level procedures and enabling them to focus on
higher-level creative AI tasks.

FUTURE DIRECTIONS
With increasing CPU power available for AI computa-
tions, NPC behavior will become more and more sophis-
ticated. Cheating, which is very annoying for the player if
discovered, can be reduced, and NPC behavior gets much
more believable. Advanced techniques will stepwise be
introduced into games, such as goal-oriented action plan-
ning, which is already starting to make an appearance

A in
Computer
GamesI

64 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 65 more queue: www.acmqueue.com

in games that are coming out soon (even though in very
simple forms).

The increasing complexity of AI technology will
make it necessary to incorporate third-party middleware.
Some companies already offer packages, but with limited
success until now. Among the reasons for that is the
lack of standard interfaces for basic AI routines, such as
DirectX or OpenGL in the graphics area. This should soon
change as the AI Interface Standards Workgroup begins to
develop such interface standards.

Besides the technological challenges, however, we
need to see more effort to make AI functionality available
for the designers/artists. They often lack programming
skills and need appropriate high-level tools to shape and
control AI behaviors.

Looking further into the future, AI will be focused not
on optimizing an NPC’s behavior, but on the player’s
fun and experience in general. This reaches far beyond
the guidance of single NPCs into learning what is fun for
the player and shaping/changing the game experience
accordingly—for example, whole cities and civilizations
being simulated in a believable way, deep NPC characters,
automated storytelling with dynamic tension and emo-
tion planning for the player, and so forth.

It seems to be a fantastic perspective for AI in games.
Just don’t get carried away too much and assume that it
will be the one and only determining factor for future
games. Games feature many great technology directions,

and AI is only one of them—of course, it is the most
fascinating! Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

REFERENCES
1. Rabin, S., ed. AI Game Programming Wisdom, Vol. 1,

2002. (Hingham, MA: Charles River Media).
2. Rabin, S., ed. AI Game Programming Wisdom, Vol. 2,

2003. (Hingham, MA: Charles River Media).
3. Treglia, D., ed. Game Programming Gems, Vols. 1–3,

2000-2002 (Hingham, MA: Charles River Media).
4. Treglia, D., ed. Game Programming Gems, Vol. 4, 2004

(Hingham, MA: Charles River Media).

ALEXANDER NAREYEK received his Ph.D. from the TU
Berlin. Since 2002, he has been on an Emmy Noether
fellowship of the German Research Foundation (DFG)
and is a guest researcher at Carnegie Mellon University.
His main research interests include the generation and
execution of behavior plans for goal-driven intelligent
agents. He is active in the application area of computer
games and serves as chairperson of the International
Game Developer Association’s (IGDA) Artifi cial Intel-
ligence Interface Standards Committee (AIISC; http:
//www.ai-center.com/home/alex/).
© 2004 ACM 1542-7730/04/0200 $5.00

Artifi cial Intelligence Interface Standards Workgroup
of the International Game Developers Association
http://www.igda.org/ai/

Steven Woodcock’s Game AI Resources
http://www.gameai.com

Game AI Articles and Research
http://www.aiwisdom.com

Amit Patel’s Game Programming and A* Information
http://www-cs-students.stanford.edu/~amitp/
gameprog.html#paths

Craig Reynolds’ Resources on Steering
http://www.red3d.com/cwr/steer/

The EXCALIBUR Project
(goal-directed action planning)
http://www.ai-center.com/projects/excalibur/

“Computer Games—Boon or Bane
for AI Research?”
(An article about whether AI research
 makes relevant contributions)
http://www.ai-center.com/references/nareyek-04-
gameairesearch.html

RESOURCESRESOURCES

AI in Games

