
Integrating Local-Search Advice Into

Refinement Search (Or Not)

Alexander Nareyek, Stephen F. Smith, and Christian M. Ohler

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213-3891, USA

alex@ai-center.com, sfs@cs.cmu.edu, ohler@cs.cmu.edu

Abstract. Recent work has shown the promise in using local-search
“probes” as a basis for directing a backtracking-based refinement search.
In this approach, the decision about the next refinement step is based
on an interposed phase of constructing a complete (but not necessarily
feasible) variable assignment. This assignment is then used to decide on
which refinement to take, i.e., as a kind of variable- and value-ordering
strategy.
In this paper, we further investigate this hybrid search approach. First,
we evaluate methods for improving probe-based guidance, by basing re-
finement decisions not only on the final assignment of the probe-con-
struction phase but also on information gathered during the probe-con-
struction process. Second, we consider the relative strengths of probe-
based search control and search control that is biased by more classically
motivated variable- and value-ordering heuristics (incorporating domain-
specific knowledge). The approaches are evaluated on various problems
from the job-shop scheduling domain.
Our results indicate that — while probe-based search performs better
than an uninformed search — use of domain-specific knowledge proves
to be a much more effective basis for search control than information
about constraint interactions that is gained by local-search probes, and
leads to substantially better performance.

1 Introduction

A broad range of combinatorial problems is naturally formulated as constraint
satisfaction problems (CSPs), and as such, the design of efficient and general
search techniques for solving CSPs has attracted much attention in recent years.

Generally, these search methods are based on the idea of refinement, i.e., step-
wise reduction in the value domains of the decision variables until each variable’s
domain has exactly one admissible value. Refinement-based search methods are
classically formulated within a backtracking search framework. In this frame-
work, constraint propagation techniques are applied at each refinement step,
and provide a basis for detection and early pruning of infeasible states. For ex-
ample, suppose we have two finite variables A and B with domains of {1 . . .10}

and a constraint B > A. In the case of a chosen refinement of A ∈ {5 . . .10},
the propagation will entail a domain reduction of B to {6 . . .10}. Refinement
decisions and propagation are iteratively repeated until a solution is found. If the
refinement that was made turns out to be inconsistent later on, which means that
no more possible values are left in a variable’s domain, backtracking is applied
to choose another refinement option.

Search-control heuristics for refinement search typically exploit measures of
flexibility/inflexibility in the evolving partial solution — the sizes of domains
of various variables in the most basic case. The effectiveness of these heuristics
rests on the ability to properly distinguish more-constrained decisions from less-
constrained decisions, which can be more or less evident from propagation results
at different stages of the search and at different levels of solution difficulty. Since,
in the case of domain-independent heuristics, guidance is usually based directly
on (local) constraint propagation results, they can suffer from the lack of a global
perspective on decision constrainedness. Domain-specific heuristics (e.g., [2, 3])
offer one approach to providing more globally-motivated search guidance.

Search methods that are based on local search, on the other hand, generate a
solution by repeatedly revising a concrete value assignment of the variables. For
example, the variables A and B could initially be assigned with values of A = 1
and B = 1. As long as constraints are inconsistent with this assignment, such as
B > A, the assignment will iteratively be revised. Changes are typically guided
by some inconsistency measurement. For example, if the repair methods allow
search to increase or decrease a variable, B might be changed to B = 2 in order
to lower the inconsistency of the constraint B > A. Such repairs are iteratively
applied until a solution is found or the search is stopped.

Local-search methods tend to build up a global picture of the “hot spots”
currently causing inconsistency, but they lack a more systematic way of resolving
these constraint interactions.

Given the complementary strengths of refinement and local-search approaches,
it makes sense to combine them. Use of local search can inject a global per-
spective to refinement search’s control decisions; refinement search can provide
a systematic basis for exploring tightly constrained regions of the underlying
search space. We focus specifically on use of the inconsistency measure of local
search as guidance for determining which refinements to apply within a refine-
ment search. Some theoretical justification for this model is given in [9], where
it is proved that a backtracking-based refinement search guided by information
of a complete assignment has a much better average run-time behavior than
previously analyzed algorithms that were not.

A number of researchers have proposed approaches along these lines. [5] and
[14] applied the GSAT local-search method [11] to generate complete assign-
ments within a backtracking refinement search in the context of solving propo-
sitional satisfiability (SAT) problems. Similarly, [10] studied the use of a linear
programming solver as a complete-assignment generator to guide a backtracking
refinement search, obtaining results that outperformed all alternative algorithms
applied to the problem of minimizing perturbations in dynamic scheduling. A

variation of this approach was presented in [7], using a local-search approach
instead of a linear programming solver.

In this paper, we extend and further evaluate the idea of integrating local
search as a basis for more globally informed control of refinement-based CSP
search. First, we consider the added benefit of factoring information related
to the local search’s assignment history into search-control decisions. The work
mentioned above has relied strictly on analysis of the final assignment generated.
Second, we consider the relative strengths of probe-based heuristics in relation
to the search control bias that is provided by more classical CSP variable- and
value-ordering heuristics that incorporate knowledge of the problem domain at
hand. We compare the use of probe-based heuristics to an uninformed refinement
search and evaluate several solver configurations that combine probe-based and
domain-specific refinement heuristics in different ways.

We investigate these issues in the application domain of job-shop scheduling.
We concentrate specifically on the problem of generating a feasible job-shop
schedule. In brief, a problem consists of n jobs, each of which requires execution
of a sequence of m tasks. Each task i of job j has a fixed duration pj,i and
requires a specific resource r ∈ R. |R| = m, and each job visits all resources in
some order (determined by its task sequence). All jobs must be completed by
a specified global due date h, and a resource can only perform one task at a
time. The goal is to find starting times for the tasks that satisfy all time and
resource constraints. Contention for resources by competing tasks is what makes
the problem difficult (NP hard). Resource contention is also reflective of global
constraint interactions, and hence representative of the sort of domain where
local search might be expected to boost refinement-search performance.

We start by describing the assumptions and components of our integrated
search framework.

2 Solver Integration

To bring local and refinement search together, [14] argue in favor of a system
that uses attributed variables, i.e., which allows the local-search solution’s values
to be stored directly within the refinement search’s solution structures, using the
same problem modeling for both search techniques. While this certainly eases
problem modeling, it has the major drawback that models cannot be created
in a way to enable structure exploitation for both search approaches. Search
performance is highly dependent on appropriate models, and we thus instead
use an integration of two solvers, both based on constraint programming but
specifically designed for local and refinement search respectively.

2.1 The Refinement Solver

The base refinement-search solver is built using the Comirem planning and
scheduling framework [13], which promotes a general view of problem solving as

an incremental constraint posting process. At its core is a Simple Temporal Prob-
lem (STP) constraint-network solver [6]. All input tasks, durations, sequencing
constraints, and deadline constraints are translated into a graph of time points
and distance constraints, and constraint propagation is performed to establish
initial time bounds on the start and end of each task. The STP constraint net-
work solver is then invoked to update these start-time and end-time bounds and
to detect constraint conflicts (infeasible states) as constraints corresponding to
each new scheduling decision are added to the network.

The process of scheduling in this model is not concerned with assigning task
start times, but instead aims to feasibly sequence the set of tasks that are com-
peting for each resource.1 A basic refinement step in the search involves two
decisions: (1) selecting an as yet unsequenced task and (2) selecting where to
insert this task into the partial sequence that has been established thus far on
the required resource’s timeline. We refer generally to a feasible position in a
resource timeline as a “slot”. In the underlying constraint network, the selection
of a slot may result in the posting of one or two precedence constraints between
competing tasks, depending on whether the task is inserted at the beginning,
at the end, or somewhere in the middle of the resource’s timeline. Thus, a final
solution will typically designate a set of possible start times for any given task
(all feasible) rather than committing to a single point.

At each refinement step, the base refinement procedure recomputes the feasi-
ble options (slots) for each uninserted task and applies search control heuristics
to determine the next decision. In the event that an infeasible state is detected,
the search backtracks chronologically and considers alternative slots for previ-
ously inserted tasks. Thus, the basic scheduling procedure is complete if given
enough time to execute, and search control heuristics are used to improve average
case performance.

In this paper we make use of two different heuristics for task selection, each
aimed at selecting the most temporally constrained task for insertion next:

– Least Options First (LOF) - Mini∈UninsertedTasks|Slotsi|. In case of ties, then
Mini∈UninsertedTasks(Min(lfti−esti−pi,

∑
s∈Slotsi

(lfts−ests−pi)), where
lftx is latest-finish-time of x, estx is the earliest start time, and pi is the
processing time of i.

– Minimum Slack First (MinSlack) - Mini∈UninsertedTasks(Min(lfti − esti −
pi,

∑
s∈Slotsi

(lfts−ests−pi)), where lftx, estx, and pi are defined as above.

Intuitively, the number of feasible options (slots) remaining provides one basic
estimate of temporal constrainedness. However, given the nature of the search
space, the insertion of a task into a given resource’s schedule (sequence) can
sometimes increase the number of options for other pending tasks that require
this same resource, and hence LOF decisions may not always be directly corre-
lated to temporal constrainedness. MinSlack provides a simpler but potentially
more direct measure of a task’s current degrees of freedom[12].

1 Hence, constraint propagation through the STP network in this context implements
enforcement of disjunctive resource constraints as described in [1].

For option selection, we adopt the following heuristic:

– Maximum Slack First (MaxSlack) - Maxs∈Slotsi
(lfts − ests − pi).

Intuitively, the option that retains the most temporal flexibility is selected by
MaxSlack.

To provide an alternative basis for search control, we also define non-deter-
ministic versions of these task selection and option selection heuristics. Follow-
ing the principle of calibrating the level of non-determinism to the discrimina-
tory power of the search heuristic in a given decision context [4], we randomize
these heuristics in a value-biased manner. Specifically, we modify the heuristic
values assigned to each choice by a bias function of the form valueb, and use
the resulting numbers to define choice probability. We refer to the randomized
counterparts of the above heuristics as LOF(b), MinSlack(b), and MaxSlack(b)

respectively.

2.2 The Local-Search Solver

The local-search solver is a modification of the DragonBreath engine2 (see [8]
for details). The solver is a general constraint-programming system and not
specialized to scheduling problems. However, it is easy to express the job-shop
scheduling problem by way of the given constraint types.

Two constraint types are used to model the problem: a non-overlap constraint
for a machine’s tasks and a linear-inequality constraint to describe a temporal
relation between tasks. In the search approach of the DragonBreath engine, every
constraint calculates an inconsistency value using a constraint-specific measure
indicating how far off the involved variables’ assignment is from a consistent
solution. For example, the non-overlap constraint returns costs related to the
time spans during which involved tasks are overlapping.

The sum of the constraints’ inconsistencies represents the total inconsistency
of the solver’s current assignment. In each improvement iteration then, an in-
consistent constraint is selected, and the constraint selects one of its constraint-
specific heuristics to change its variables’ values in order to reduce the con-
straint’s inconsistency. For example, a non-overlap constraint might select a
heuristic to shift a task to a time at which it causes less overlaps.

The search landscape does not have local minima because the applicability of
the constraints’ heuristics is not restricted to greedy improvements of the overall
inconsistency. Randomization and learning techniques are applied to promote
exploration.

In contrast to the refinement solver, the local-search solver has concrete val-
ues assigned for all variables — the tasks’ starting times in this case — at any
time. The local-search solver therefore also has a complete picture about the
currently involved inconsistencies, which makes it easier to identify potential
“trouble spots”, i.e., regions where it is not easy to establish consistency.

2 The engine is freely available at:
http://www.ai-center.com/projects/dragonbreath/

2.3 The Solvers’ Interaction

The interaction of the solvers is shown in Figure 1. Refinement search is the mas-
ter process, using the local-search solver for heuristic guidance. Both solvers have
different internal representations of the job-shop scheduling problem and com-
municate in reference to decision variables, which are the tasks’ starting times.
For every refinement decision of the refinement solver, the local-search solver is
notified to internally add a corresponding constraint <4> so that both solvers
keep working on the same problem. In case of backtracking, this constraint is
removed again <5>.

A = [0..1000]

B = [374]

C = [0..20]

D = [20..700]

Refinement Solver

(Master)

Decision Variables:
<1> Granting optimization time

Suggestion of refinement decision

Suggestion of refinement option

<4> Propagating refinement

<5> Canceling refinement

A = 382

B = 374

C = 0

D = 570

Local-Search Solver

(Slave)

Decision Variables:

<2> Asking which refinement decision to make

<3> Asking which refinement option to choose

Fig. 1. Solver integration.

The local-search solver can suggest, at each refinement step, which refinement
decision to make and which refinement option to choose. For example, in case of
the job-shop scheduling problem, the local-search solver suggests for which task
an ordering decision should be made next <2> and which ordering constraints
(before or after) relative to other tasks on the same machine should be chosen
<3>. Since we are also interested in exploring the interplay of local search and
the base refinement heuristics, we also admit configurations that restrict the use
of local-search guidance to either task selection <2> or ordering decisions <3>.

Refinement recommendations of the local-search solver are generally made
in a way to focus on critical regions, i.e., recommending variables for refinement
that are related to the highest amount of inconsistency, and to steer the local-
search solver’s assignment away from inconsistencies, i.e., recommending values
that minimize these inconsistencies (see following sections for details).

At each refinement step, the local-search solver is given some time for op-
timization <1> to adapt to the current situation before a recommendation is
queried. In our current implementation, this time is split into a time for general
optimization (500 iterations for the test runs given below), and a time in which
the local-search solver concentrates on satisfying only the refinement decisions

already taken (maximally 200 iterations for the test runs given below). There
is also some optimization time granted to the local-search solver before the re-
finement (1000 iterations for the test runs given below). If at any point during
the overall refinement search, the local-search solver finds a feasible solution to
the problem at hand, then this solution is returned and the refinement search
terminates in success.

3 Test Problems

Our sample problems are taken from the OR-library3. They include three prob-
lems with ten jobs and ten resources (“1000/abz5”, “1006/ft10” and “1051/orb04”).
We also ran other problems of different sizes to verify our findings; the results
confirm our findings but are not included here. Note that the commonly pub-
lished makespan benchmarks for these problems are not applicable here because
we tackle the satisfaction problem — searching for a solution within a fixed
horizon — instead of optimizing the makespan.

For each test run, there is a cut-off at 1000 refinement steps. Most variants
discussed below involve randomization components. At least 50 test runs are
thus run per configuration.

Three different difficulties are identified per problem to define problems of
increasing hardness. Problem difficulty is a function of the tightness of the global
due date. To determine problem difficulties, the temporal distance between an
infinite capacity solution (lower bound) and a due date equal to

∑
i∈Tasks pi

(upper bound) was divided into 100 increments. The “hard” difficulty represents
the loosest global due date (moving from upper to lower) for which the refinement
solver alone (i.e., using only the base refinement heuristics LOF and MaxSlack)
cannot produce a solution. The “medium” difficulty is obtained by setting the
global due date one step toward the upper bound and “easy” is obtained by
moving 10 steps further in that direction.

4 Involving Local Search’s Search History

In previous approaches, a recommendation of the local-search solver was based
on the variable assignment (and the involved inconsistency in consequence) after
a specific amount of time was given to the local-search solver for improvement4.
We will refer to this as strategy CI (like “Current Inconsistency”) in the follow-
ing. For this strategy, after the local-search phase, the inconsistencies of every
constraint that a task is involved in are summed up, and the task with the
highest inconsistency sum is recommended for a refinement decision. For the

3 http://graph.ms.ic.ac.uk/info.html
4 Note that there are also some approaches in which local search is run until a local

minima is reached, or — using local search only for sub-problems — in which local
search is run until a fully satisfying solution is found. Approaches like this, however,
provide little temporal control for the search process.

recommendation of the ordering, all current orderings of a task with respect to
the selected task are considered, and the reverse of the ordering involving the
highest inconsistency is recommended.

However, this approach only exploits the information that is available after
the improvement of local search has been completed. If local search is considered
to be an intelligent sampler of a search space, this means that only one sam-
pling is returned by this approach. Moreover, the assignments at this time may
just represent a short-term anomaly caused by a bad last local-search move. We
thus vary the recommendation strategy in the following by additionally involv-
ing information gathered during the complete local-search phase, incorporating
information of multiple assignment samples thereby.

4.1 Iterations of Inconsistency

The strategy analyzed in this section makes use of demons that record specific
features about the constraints and their inconsistency during the local-search
improvements.

For every pair of tasks ta and tb on a resource, there is a demon dab recording
the number of iterations in which ta was preceding tb and constraints involving
ta or tb were inconsistent. There is also a complement demon dba for situations in
which tb was preceding ta. When a recommendation is to be made, the demons
propagate their iteration counts to the tasks involved, which sum these counts.
The task with the highest number of such “iterations of inconsistency” is rec-
ommended for a refinement decision (strategy II). For the recommendation of
the ordering, the reverse ordering of the demon with the highest iteration count
is recommended. The demons’ counts are reset to 0 every time a refinement
decision is made or canceled/backtracked by the refinement solver.

4.2 Average Inconsistency

For the following strategy AI, we additionally involve the constraints’ quanti-
tative inconsistency values. In contrast to strategy II, not only the number of
inconsistent iterations is recorded by the demons but also the quantitative in-
consistency value that is involved. The average inconsistency during inconsistent
iterations is then propagated to the tasks involved and used as recommendation
criterion.

4.3 Bound Propagation

In addition to notifying local search about the ordering refinements adopted, the
refinement-search solver can also inform local search about changes to the time
bounds of individual start-time variables, which are updated during constraint
propagation when a refinement decision is made. Implicitly, local search already
has this information by way of the orderings, but additional explicit constraints
may help local search to fulfill these bound constraints. Bounds represent hard

constraints in the DragonBreath engine, i.e., a variable’s value will immediately
be shifted back into the bound if a heuristic tries to assign a value outside the
bound. Thus, the propagation of such bounds may have a much larger impact
than the implicit information. The extension of strategy AI by propagating these
bounds to local search will be called AI-B in the following.

4.4 Results

Figures 2 to 4 show the results for all strategies. It can be seen that the strategy
AI outperforms the other two and confirms our thoughts that the additional
quantitative information is crucial to improved search performance.

0

20

40

60

80

100

0 200 400 600 800 1000

P
e

rc
e

n
ta

g
e

 o
f

s
u

c
c
e

s
s
fu

l
te

s
t

ru
n

s

Nodes expanded

CI

II

AI

AI-B

0

20

40

60

80

100

0 200 400 600 800 1000

P
e

rc
e

n
ta

g
e

 o
f

s
u

c
c
e

s
s
fu

l
te

s
t

ru
n

s

Nodes expanded

0

20

40

60

80

100

0 200 400 600 800 1000

P
e

rc
e

n
ta

g
e

 o
f

s
u

c
c
e

s
s
fu

l
te

s
t

ru
n

s

Nodes expanded

Easy Medium

Hard

Fig. 2. Comparing variants of local-search recommendations — problem 1000.

Strategy II does not work out well. One reason might be that – especially
in problems with tight global deadlines – strategy II can hardly differentiate

CI

II

AI

AI-B

Easy Medium

Hard

0

20

40

60

80

100

0 200 400 600 800 1000

P
e
rc

e
n
ta

g
e
 o

f
s
u
c
c
e
s
s
fu

l
te

s
t
ru

n
s

Nodes expanded

0

20

40

60

80

100

0 200 400 600 800 1000

P
e
rc

e
n
ta

g
e
 o

f
s
u
c
c
e
s
s
fu

l
te

s
t
ru

n
s

Nodes expanded

0

20

40

60

80

100

0 200 400 600 800 1000

P
e
rc

e
n
ta

g
e
 o

f
s
u
c
c
e
s
s
fu

l
te

s
t
ru

n
s

Nodes expanded

Fig. 3. Comparing variants of local-search recommendations — problem 1006.

between task options because most constraints are unsatisfied during the entire
run.

The result of propagating bounds — strategy AI-B — does nearly always
perform better than strategy AI. However, keep in mind that the x-axis shows
the number of refinement steps/nodes. Propagating bounds to the local-search
solver involves computation costs, and it depends on the applied solvers and
communication speed if this additional overhead pays off.

In some rare cases, propagating bounds worsens the results. An explanation
for this might be that in certain situations, the application of hard constraints
for bounds restricts local search’s ability to move to other regions of the search
space, sampling less of the relevant assignments thereby.

5 Comparison to Uninformed Recommendations

We were able to improve the use of local search, but have not yet demonstrated
that the advice that is extracted by using the inconsistency information of local

CI

II

AI

AI-B

Easy Medium

Hard

0

20

40

60

80

100

0 200 400 600 800 1000

P
e

rc
e

n
ta

g
e

 o
f

s
u

c
c
e

s
s
fu

l
te

s
t

ru
n

s

Nodes expanded

0

20

40

60

80

100

0 200 400 600 800 1000

P
e

rc
e

n
ta

g
e

 o
f

s
u

c
c
e

s
s
fu

l
te

s
t

ru
n

s

Nodes expanded

0

20

40

60

80

100

0 200 400 600 800 1000

P
e

rc
e

n
ta

g
e

 o
f

s
u

c
c
e

s
s
fu

l
te

s
t

ru
n

s

Nodes expanded

Fig. 4. Comparing variants of local-search recommendations — problem 1051.

search’s samplings guides search in a better way than a simple randomized choice
for task selection and ordering at each refinement step (RND).

Considering only the hard problems (which cannot be solved deterministi-
cally), it is difficult to discriminate performance. AI-B is able to find solutions
for a small number of runs and RND never produces a solution on any runs. The
utility of AI-B over RND is more evident if we restrict use of AI-B (resp. RND)
guidance only to task selection and rely on the refinement solver’s base MaxSlack
heuristic for option selection. Figure 5 shows the results for these configurations.5

If a local-search solver is used, however, the costs of running the local-search
optimization and the overhead for solver communication must be considered.
This search overhead may vary depending of the applied solvers and integration,
but in our experimental setting, it turned out to be a substantial overhead that
hardly justifies the improvement gained in search guidance.

5 Experiments that restricted AI-B (resp. RND) guidance to option selection were also
run, but these configurations were not as effective.

Problem 1000/hard

Problem 1051/hard

RND/MaxSlack

AI-B/MaxSlack

0

20

40

60

80

100

0 200 400 600 800 1000

P
e

rc
e

n
ta

g
e

 o
f

su
cc

e
ss

fu
l t

e
st

 r
u

n
s

Nodes expanded

Problem 1006/hard

0

20

40

60

80

100

0 200 400 600 800 1000

P
e

rc
e

n
ta

g
e

 o
f

su
cc

e
ss

fu
l t

e
st

 r
u

n
s

Nodes expanded

0

20

40

60

80

100

0 200 400 600 800 1000

P
e

rc
e

n
ta

g
e

 o
f

su
cc

e
ss

fu
l t

e
st

 r
u

n
s

Nodes expanded

Fig. 5. Comparison to uninformed refinements.

6 Comparison to Domain-Specific Heuristics

We have shown that the inconsistency information of local search’s sampling is
a well-informed heuristic. However, for many problems, it may be easy to come
up with domain-specific refinement heuristics. In the previous section, it already
became clear that using the MaxSlack refinement heuristic for option selection
instead of local search’s recommendation drastically improves performance.

Figure 6 shows the impact of the refinement heuristics described in Section
2.1 for task selection. Despite the fact that deterministic LOF/MaxSlack is un-
able to solve any of the hard instances, configurations of LOF(b)/MaxSlack for
various bias values outperform AI-B/MaxSlack in most cases. A second config-
uration MinSlack(b)/MaxSlack that utilizes the simpler MinSlack heuristic for
task selection was found to consistently perform better than AI-B/MaxSlack.
Moreover, even the deterministic variant MinSlack/MaxSlack is able to solve
two of the three hard problems with just one or two backtracks. These results

Problem 1000/hard Problem 1006/hard

LOF(5)/MaxSlack

MinSlack(5)/MaxSlack

MinSlack/MaxSlack

AI-B/MaxSlack

0

20

40

60

80

100

0 200 400 600 800 1000P
e

rc
e

n
ta

g
e

 o
f

su
cc

e
ss

fu
l t

e
st

 r
u

n
s

Nodes expanded

0

20

40

60

80

100

0 200 400 600 800 1000P
e

rc
e

n
ta

g
e

 o
f

su
cc

e
ss

fu
l t

e
st

 r
u

n
s

Nodes expanded

Problem 1051/hard

0

20

40

60

80

100

0 200 400 600 800 1000P
e

rc
e

n
ta

g
e

 o
f

su
cc

e
ss

fu
l t

e
st

 r
u

n
s

Nodes expanded

Fig. 6. Comparison to domain-specific heuristics.

are all the more significant when coupled with the fact that use of these refine-
ment heuristics is substantially cheaper than calling the local-search solver.

7 Conclusion

We have studied the integration of local-search advice into a refinement search.
The advice was provided by suggesting refinements that guide refinement search
away from the inconsistency of local search’s assignment samplings.

In the approaches of previous work, local search was allowed to run for a
while, and only the final assignment was used for recommendations. The local-
search assignment at this time may be of high quality in terms of local search’s
cost metric, but we have shown that integrating the information of intermediate
search steps results in better advice. Intuitively, the advice includes more possible
assignments that were sampled by local search this way.

We have shown that the inconsistency of local search’s assignment can pro-
vide productive heuristic guidance. However, the computational costs for the

integration overhead and local-search optimization make this a rather dubious
result. Moreover, even simple domain-specific heuristics seem to result in equal
or better performance than the “mushy” information of inconsistency of local-
search samplings. This seems to be plausible, but we were surprised how easy it
is to outperform the probe-based heuristic.

An interesting question for the future is if we can develop heuristics that
can classify their recommendation value, and possibly switch to the probe-based
heuristic in decision contexts where they can provide only little guidance. Pre-
liminary experiments that decrease the probability of using the probe-based
heuristic with increasing refinement depth, however, did not look highly promis-
ing. The rationale for this approach was that refinement search potentially gets
more informed with increasing refinement depth because the variables’ domains
get smaller, enabling predictions that are more precise.

The presented emipircal results only cover job-shop scheduling examples, and
for other domains, where less efficient refinement heuristics are known, probe-
based search may still be a viable option. Our results, however, suggest that
one should be careful in investing too much efforts in improving the probe-based
approach instead of thinking about more appropriate refinement heuristics.

References

1. Baptiste, P., LePape, C. and Nuijten, W. Constraint-Based Scheduling: Apply-

ing Constraint Programming to Scheduling Problems. Kluwer Academic Publishers,
Boston, 2001.

2. Beck, J. C. Texture Measurements as a Basis for Heuristic Commitment Techniques
in Constraint-Directed Scheduling. Ph.D. Thesis, Department of Computer Science,
University of Toronto, 1999.

3. Cheng, C., and Smith, S.F. Applying Constraint Satisfaction Techniques to Job
shop Scheduling. Annals of Operations Research 70: 327–357, 1997.

4. Cicirello, V., and Smith, S. F. Amplification of search performance through ran-
domization of heuristics. In Proceedings of the Eighth International Conference on
Principles and Practice of Constraint Programming (CP 2002), 2002.

5. Crawford, J. M. Solving Satisfiability Problems Using a Combination of Systematic
and Local Search. Second DIMACS Challenge: Cliques, Coloring, and Satisfiability,
Rutgers University, NJ, 1993.

6. Dechter, R.; Meiri, I.; and Pearl, J. Temporal Constraint Networks. Artificial

Intelligence 49(1): 61–95, 1991.
7. Kamarainen, O., and El Sakkout, H. Local Probing Applied to Scheduling. In

Proceedings of the Eighth International Conference on Principles and Practice of
Constraint Programming (CP 2002), 155–171, 2002.

8. Nareyek, A. Using Global Constraints for Local Search. In Freuder, E. C., and
Wallace, R. J. (eds.), Constraint Programming and Large Scale Discrete Optimization,
American Mathematical Society Publications, DIMACS Volume 57, 9–28, 2001.

9. Purdom Jr., P. W., and Haven, G. N. Probe Order Backtracking. SIAM Journal

on Computing 26(2): 456–483, 1997.
10. El Sakkout, H., and Wallace, M. Probe Backtrack Search for Minimal Pertubation

in Dynamic Scheduling. Constraints 5(4): 359–388, 2000.

11. Selman, B.; Levesque, H.; and Mitchell, D. A New Method for Solving Hard
Satisfiability Problems. In Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI-92), 440–446, 1992.

12. Smith, S.F.; and Cheng, C. Slack-Based Heuristics for Constraint Satisfaction
Scheduling. Proceedings 11th National Conference on Artificial Intelligence Wash-
ington D.C., July 1993.

13. Smith, S.F.; Hildum, D.; and Crimm, D. Interactive Resource Management in
the Comirem Planner. Proceedings AAAI Workshop on Mixed-Initiative Intelligent

Systems, Acapulco Mexico, August 2003.
14. Schimpf, J., and Wallace, M. Finding the Right Hybrid Algorithm – A Combinato-

rial Meta-Problem. Annals of Mathematics and Artificial Intelligence 34(4): 259–269,
2002.

