Local Search for Heuristic Guidance in Tree Search

Alexander Nareyek! and Stephen F. Smith and Christian M. Ohler?

Abstract. Recent work has shown the promise in using local-search
“probes” as a basis for directing a backtracking-based refinement
search. In this approach, the decision about the next refinement step
is based on an interposed phase of sampling possible (but not neces-
sarily feasible) variable assignments by local search. This informa-
tion is then used to decide on which refinement to take, i.e., as a kind
of variable- and value-ordering strategy.

In this paper, we investigate the efficiency of this hybrid search ap-
proach in the combinatorial domain of job-shop scheduling. First, we
evaluate methods for improving probe-based guidance, by basing re-
finement decisions not only on the final assignment of the probe-con-
struction phase but also on information gathered during the probe-
construction process. We show that such techniques can result in a
significant performance boost.

Second, we consider the relative strengths of probe-based search
control and search control that is biased by more classically moti-
vated variable- and value-ordering heuristics (incorporating domain-
specific knowledge) that are not based on local search. Our results
indicate that — while probe-based search performs better than an
uninformed search — use of domain-specific knowledge is a much
more effective basis for search control than information about con-
straint interactions that is gained by local-search probes, and leads to
substantially better performance.

This paper provides only a brief overview. For a detailed presen-
tation, please have a look at [2].

1 Introduction

A broad range of combinatorial problems is naturally formulated as
constraint satisfaction problems (CSPs), and as such, the design of
efficient and general search techniques for solving CSPs has attracted
much attention in recent years. The major paradigms to solve CSPs
are refinement search (or “tree search”) and local search.

In refinement search, a stepwise reduction in the value domains
of the decision variables is performed, interleaved with propaga-
tion phases, until each variable’s domain has exactly one admissi-
ble value. If a refinement that was made turns out to be inconsistent
later on, backtracking is applied to choose another refinement option.
Search methods that are based on local search, on the other hand,
generate a solution by repeatedly revising a concrete value assign-
ment of the variables.

Refinement and local search have complementary strengths, and
it seems useful to combine them. Use of local search can inject a
global perspective to refinement search’s control decisions; refine-
ment search can provide a systematic basis for exploring tightly con-

1 Cork Constraint Computation Centre, University College Cork, Cork, Ire-
land, e-mail: alex@ai-center.com

2 School of Computer Science, Carnegie Mellon University, 5000 Forbes
Avenue, Pittsburgh, PA 15213-3891, USA, e-mail: sfs@cs.cmu.edu,
ohler@cs.cmu.edu

strained regions of the underlying search space. In this paper, we fo-
cus specifically on use of the inconsistency measure of local search
as guidance for determining which refinements to apply within a
refinement search. First, we consider the added benefit of factor-
ing information related to the local search’s assignment history into
search-control decisions. Second, we consider the relative strengths
of probe-based heuristics in relation to uninformed refinement search
and a search control bias that is provided by more classical heuristics
that incorporate knowledge of the problem domain at hand. We inves-
tigate these issues in the application domain of job-shop scheduling.

2 The Solvers and Their Integration

The base refinement solver is built using the Comirem planning and
scheduling framework [3]. The process of scheduling aims to feasi-
bly sequence the set of tasks that are competing for each resource.
A basic refinement step in the search involves two decisions: (1) se-
lecting an as yet unsequenced task and (2) selecting where to insert
this task into the partial sequence that has been established thus far
on the required resource’s timeline.

At each refinement step, the base refinement procedure computes
the feasible insertion options for each uninserted task and applies
search control heuristics to determine the next decision. When an
infeasible state is detected, the search backtracks chronologically and
considers alternative options for previously inserted tasks. Thus, the
basic procedure is complete if given enough time, and search control
heuristics are used to improve average case performance.

The local-search solver is a modification of the DragonBreath
engine3 (see [1] for details). The solver is a general constraint-
programming system and not specialized to scheduling problems.
However, it is easy to express the job-shop scheduling problem by
way of the given constraint types.

In the search approach of the DragonBreath engine, every con-
straint calculates an inconsistency value using a constraint-specific
measure indicating how far off the involved variables’ assignment
is from a consistent solution. The sum of the constraints’ inconsis-
tencies represents the total inconsistency of the current variable as-
signment. In each improvement iteration, an inconsistent constraint
is selected, which then selects one of its constraint-specific heuristics
to change the assignment in order to reduce the constraint’s inconsis-
tency. In contrast to the refinement solver, the local-search solver has
concrete values assigned for all variables — the tasks’ starting times
in this case — at any time.

Figure 1 shows the interaction of the solvers. Refinement search
is the master process, using the local search for heuristic guidance.
Both solvers have different internal representations of the scheduling
problem and communicate in reference to decision variables, which

3 The engine is freely available at:
http://www.ai-center.com/projects/dragonbreath/



are the tasks’ starting times. For every refinement decision, the local-
search solver is notified to internally add a corresponding constraint
<4> so that both solvers keep working on the same problem. In case
of backtracking, this constraint is removed again <5>.

Refinement Solver Local-Search Solver
(Master) (Slave)

Decision Variables:

Decision Variables:

<1> Granting optimization time ————»

— <2> Asking which refinement decision to make ]
<+—— Suggestion of refinement decision

— <3> Asking which refinement option to choose
<+——— Suggestion of refinement option ;l

<4> Propagating refinement ————>

<5> Canceling refinement ———

Figure 1. Solver integration.

The local-search solver can suggest, at each refinement step, which
refinement decision to make and which refinement option to choose.
For the job-shop scheduling problem, the local-search solver sug-
gests for which task an ordering decision should be made next <2>
and which ordering constraints (before or after) relative to other tasks
on the same machine should be chosen <3>.

At each refinement step, the local-search solver is given some time
for optimization <1> to adapt to the current situation (if constraints
were added or removed) before a recommendation is queried.

3 Different Strategies for Local-Search Advice

The following strategies to provide advice for guiding the refinement
solver’s search decision are tested:

e Strategy CI: Current Inconsistency
This strategy only exploits the information that is available after
the improvement phase of local search has been completed. After
a local-search phase, it is evaluated if the potential refinement de-
cisions would cause inconsistencies. A refinement decision is rec-
ommended that steers away from the option that causes the highest
inconsistency.

e Strategy I1: Iterations of Inconsistency
During a local-search phase, this strategy keeps track of the num-
ber of iterations in which potential refinement decisions cause in-
consistencies. A refinement decision is recommended that steers
away from the option that causes an inconsistency most often.

e Strategy AI: Average Inconsistency
Not only the number of iterations with inconsistencies is consid-
ered, but also the average of the inconsistency for these iterations.
The recommendation is based on this average instead of the only
the number of iterations with inconsistencies.

In addition, the refinement-search solver can propagate changes
to the domain bounds of individual start-time variables to the local-
search solver. Bounds represent hard constraints in the DragonBreath
engine, i.e., a variable’s value will immediately be shifted back into
the bound if a heuristic tries to assign a value outside the bound.
Strategy AI-B is AT with bound propagation.

For every problem instance and solving strategy, 50 test runs are
computed. Strategies are then compared in a pairwise way for each
problem, rating a strategy as better if it was able to find a solution
(within the cut-off limit) in 10% more cases than the other strategy.

Figure 2 shows the results for all strategy pairs. It can be seen
that IT outperforms CI, and AT performs best of all; this confirms
that the exploitation of inconsistency information gathered during the
local-search phase can substantially improve local search’s guidance.

20 Problem Instances (Easy Difficulty) / 50 Test Runs

Oabetterthanb Oaandbequal B aworse thanb

100%

80% T —

70% T —

60% T —

50% T —

40% +—| -

30% —

20% T —

10% T —

0% T T T T
a=AlB/ALB a=AlAl a=AlB/AB a=AlB/ALB
b=CICI b=l b= b = AlVAI

a= a=AlAl
b=CICI b=CICI

Figure 2. Comparing variants of local-search recommendations.

Propagating bounds — strategy AI-B — is nearly always an im-
provement over strategy AI. However, keep in mind that we count re-
finement steps/nodes and not computation time. Propagating bounds
to the local-search solver adds computational overhead, and whether
this pays off depends on the solvers and communication speed.

4 Comparison to Other Forms of Advice/Heuristics

In comparison to simple uninformed/randomized choices for task se-
lection and ordering, the local-search advice performs much better
(see main paper [2]). However, the costs of running a local-search
solver must be considered. In our experimental setting, it turned out
to be a substantial overhead that hardly justifies the improvement.

For many problems, it may be easy to come up with domain-
specific refinement heuristics. Our results indicate that even simple
heuristics of this kind substantially outperform the local-search ad-
vice (see [2]). This seems to be plausible, but we were surprised how
easy it is to outperform the probe-based heuristic. These results are
all the more significant considering that use of the refinement heuris-
tics is much cheaper than calling the local-search solver.

For other domains than job-shop scheduling, where less domain
knowledge can be exploited by refinement heuristics, local-search-
based guidance may still be a viable option. In these cases, one
should consider the extended integration techniques presented in this
paper, i.e., also incorporating information gathered during the local
search phase and feeding propagation results back into local search.

Acknowledgements: This work was supported in part by DARPA
Contract #F30602-00-2-0503 and the CMU Robotics Institute.

REFERENCES

[1] Nareyek, A. Using Global Constraints for Local Search. In Freuder,
E. C., and Wallace, R. J. (eds.), Constraint Programming and Large
Scale Discrete Optimization, American Mathematical Society Publica-
tions, DIMACS Volume 57, 9-28, 2001.

[2] Nareyek, A.; Smith, S. F.; Ohler, C. M. Integration of a Refinement
Solver and a Local-Search Solver. CMU Tech Report, TR-CMU-RI-
04-33, Pittsburgh, PA, USA, 2004.

[3] Smith, S.F.;; Hildum, D.; and Crimm, D. Interactive Resource Manage-
ment in the Comirem Planner. Proceedings AAAI Workshop on Mixed-
Initiative Intelligent Systems, Acapulco Mexico, August 2003.



