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Abstract

Hardly any environment is a static domain in which
an agent is the only one who is changing states of
the world. Thus, many events occur that are not
a direct consequence of an agent’s actions. Be-
sides events that occur in full independence of an
agent, there are events that can be influenced indi-
rectly, e.g., by asking other agents to perform spe-
cific tasks. Even in the absence of other agents,
an action by an agent can lead to a complex effect
chain. Explicitly reasoning about such indirect con-
sequences of actions is indispensable in nearly all
real-world domains.

Action planning systems to drive an intelligent
agent, however, do not incorporate concepts to han-
dle such world dynamics. An action usually has a
definite effect — without a possibility of further in-
direct consequences. Some planning systems allow
for the occurrence of external events, but do not en-
able relations to an agent’s actions.

In this paper, we propose a solution to this short-
coming of planning systems by integrating a kind
of enhanced rule-based system. Using this ap-
proach, a planning system can reason about indirect
consequences and exploit these external mechanics
in order to achieve its goals. The enhancements are
demonstrated from the perspective of a constraint-
based planning system based on local search.

1 Introduction

Producing behavior commands for an autonomous agent can
be achieved by a large variety of methods. Pre-coded be-
havior scripts are one of the most applied and extreme al-
ternatives, providing highly domain-adequate guidance, but
quickly become infeasible in slightly more complex environ-
ments. When more sophisticated Al techniques are to be ap-
plied, the question shifts to the issue which feature set can
efficiently be handled. For example, BDI logics [11] pro-
vide a very expressive framework, but involve unmanageable
complexity. Approaches of action planning, which serve as a
basis in the following, provide a middle ground. They focus
on assembling/scheduling networks of basic action primitives

instead of allowing for arbitrary reasoning problems, thereby
making it possible to apply highly specialized technology to
speed up the solving process.

The basic planning problem is given by a partial descrip-
tion of an agent’s current world, a partial description of the
goal world, and a set of action/operator types that map a par-
tial world description to another partial world description. A
solution is a sequence of action instances transforming the
current world description to the goal world description and
is called a plan." The problem can be enriched by includ-
ing further aspects, like temporal or uncertainty issues, or by
desiring the optimization of certain properties.

Action planning systems, however, still lack many fea-
tures that would be needed for appropriately guiding an au-
tonomous agent. One of them — agent-external changes of
the world/environment — is dealt with in this paper. We
should mention that we do not target a distributed planning
domain; every agent is fully autonomous and interacts with
his environment only to maximize his personal goal achieve-
ment.

Action planning systems are very agent-centric, i.e., hardly
ever involve any other mechanisms/agents acting in the
world. In very rare cases, external events and transitions
among them are considered (e.g., in [1]). These events, how-
ever, cannot be influenced by the agent’s actions. In most
cases, such events are used to model the incomplete knowl-
edge of an agent. Examples of contingency planners, i.e.,
planning systems that construct branching plans to deal with
the uncertain event outcomes, are Warren’s WARPLAN-C
[10], CNLP by Peot and Smith [8], Plinth by Goldman and
Boddy [5] and Cassandra by Pryor and Collins [9]. There are
probabilistic extensions as well, including Drummond and
Bresina’s synthetic projection [4] and the BURIDAN proba-
bilistic planning by Kushmerick, Hanks and Weld [6] with
its contingent extension by Draper, Hanks and Weld [3].
Recently, much research in this area has focused on plan-
ning based on Markov decision processes (see [2] for an
overview). But again, these approaches do not involve the
influence of the agent, and hardly ever model world mechan-
ics that produce these events.

'Note that this definition of the term planning is different from
that expected by people in the operations research (OR) community
(e.g., scheduling).



Planning in a multi-agent world requires more than han-
dling external events. The agent needs to know about the
mechanics at work — external transitions —, so that he can
influence and potentially exploit these mechanisms. For ex-
ample, an agent could order another agent to follow him. This
action does not have a direct post-condition that the follower
will always be at the same position as the agent but only that
the follower will try to do so. The agent needs to take care
that the follower does not lose track of him, e.g., when the
follower has to stop at a red traffic light. It is impossible to
solve such a scenario with a conventional planning system
because such a system cannot reason about the external tran-
sitions and the impact of the command to follow. In theory, it
would be possible to incorporate all possible external changes
as a by-product of temporally very fine-grained actions of the
agent — this, however, involves an unmanageable combina-
torial explosion for any realistic application.

The differentiation between actions and external transitions
may look strange to persons from the planning community
at first, but the key point is that the world’s behavior can be
modeled as a set of ongoing transitions/rules instead of final,
static consequences.

External transitions can be handled by introducing a kind
of rule-based system. However, it is not sufficient to fire all
applicable rules until a fix point is reached. The agent wants
to exploit external transitions, e.g., to have another agent per-
forming a task for him, and must be able to chain backwards
through these rules to determine how the changes can be ini-
tiated. Reasoning about such rules is in principle similar to
reasoning about the agent’s own actions; however, there are
some important differences. The following section introduces
our underlying planning model, which will be used in the fol-
lowing to demonstrate the techniques’ realization.

2  The Planning Model

Describing the complete model and the underlying concepts
of the EXCALIBUR agent’s planning model [7] would go be-
yond the limits of this paper. Only the basic elements are thus
described in this section, and the following sections will pro-
vide simplified intuitive descriptions as well as some more
in-depth information for those that are familiar with the sys-
tem.

2.1 Problem Specification and Solution

Planning is specified in an extended constraint-programming
framework. Basic elements are variables and constraints.
Constraints limit the possible values that the variables can
take. Because of our local-search approach, variables have
concrete values at any time during the search process. Cost
functions are specified for each constraint type, returning a
value that represents the constraint’s current inconsistency
with respect to the connected variables. For example, a sim-
ple Sum constraint with two variables a and b to be added and
an s variable for the sum could specify its costs as Sum.,sts =
|a + b — s|. If the sum of all constraints’ costs reaches zero,
the variables’ value assignments represent a valid solution to
the problem.

For the generation of a solution, a constraint has a num-
ber of heuristics to improve its cost function. For example, a

heuristic for the Sum constraint could randomly choose one
of the related variables and change its value such that the con-
straint is fulfilled. Another heuristic might resolve the in-
consistency by distributing the necessary change such that all
variables are changed by the same (minimal) amount. A con-
straint must make the choice as to which heuristic to apply on
its own. In each improvement iteration of local search, one
of the constraints that has costs higher than zero is selected to
perform an improvement.

2.2 Model Elements

Figure 1 shows an example constraint graph involving the
constraints that are of interest in the following. The constraint
graph represents a very simple plan — involving only one ac-
tion to move from location A to B. Object constraints are a
structural feature to group graph elements, i.e., they do not
restrict variables’ values and do not have a cost function.
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Figure 1: An example constraint graph for planning.

An ACTION (e.g., moving from A to B) consists of a set
of different preconditions that must be satisfied (e.g., that the
agent is at location A), operations that must be performed
(e.g., the actual low-level commands to execute the move-
ment) and resulting state changes (e.g., the agent’s location
being changed to B). These elements are represented by ob-
ject constraints, i.e., there are PRECONDITION TASKs for
precondition tests, ACTION TASKs for operations and STATE
TASKs for state changes. There are three basic types of regu-
lar constraints:

e An ACTION RESOURCE CONSTRAINT (ARC) checks if
there is enough capacity to carry out the operations, i.e.,
that the connected tasks do not overlap (e.g., that the feet
do not move to multiple locations at once).

e A STATE RESOURCE CONSTRAINT (SRC) checks if the
connected PRECONDITION TASKs are satisfied by the
states that are deduced from the temporal projection of
the connected STATE TASKS (e.g., that the “@A” precon-
dition of the action to move from A to B is met).



e A TASK CONSTRAINT (TC) represents action require-
ments by specifying a relation between a set of PRE-
CONDITION TASKs, ACTION TASKs and/or STATE
TASKs (connected via the ACTION object constraint).
The constraint is satisfied if the tasks represent the ac-
tion type given by the action-type variable, i.e., if the
correct tasks are involved and if the tasks fulfill certain
restrictions (e.g., that the PRECONDITION TASK and the
ACTION TASK of the movement action begin at the same
time).

2.3 Graph Structure

To solve planning problems, it is not sufficient to change vari-
ables’ values. The constraint graph itself must be changed.
For example, it must be possible to add/remove actions. Thus,
the constraints’ heuristics can also execute graph modifica-
tions, e.g., to add the structures for an extra state task.

So-called structural constraints ensure that graph modifi-
cations of the heuristics do not produce an invalid structure
of the constraint graph. Figure 2 shows one of the structural
constraints for the planning domain.
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An example of a structural constraint. The constraint applies at any
part of the graph where the left side matches, and is fulfilled if the right
side matches then as well (the dark area of the right side describes a
“negative” match, i.e., exactly one task constraint is required to be
connected fo the state task).
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Figure 2: An example of a structural constraint.

Similar to regular constraints, structural constraints have
cost functions to express their satisfaction and heuristics for
improvement iterations.

3 External Transitions

As described above, each action of an agent explicitly lists
its effects on the world (in our approach, by way of STATE
TASKS). The problem is that there are often many indi-
rect consequences. All possible indirect consequences of an

action could of course be integrated in an action by condi-
tional effects, but the combinatorial explosion involved ren-
ders this approach infeasible. Imagine enumerating all pos-
sible external consequences on future situations of an action
to say “Yes” instead of only modeling the direct effect that
the agent’s consent is expressed. Indeed, the basic idea of
planning techniques is not to pre-code all possible situations.

Changes of the world that are beyond the agent’s direct
control are called external transitions is the following. In re-
spect to incorporating them into the planning process, exter-
nal transitions can in general be modeled similar to the regular
actions of an agent. Nevertheless, there are some important
differences:

e Occurence: External transitions occur beyond the
agent’s control, i.e., they definitely occur, and the agent
has no choice of adding them to the plan or not (they can
only be influenced indirectly).

e Temporal placement: An external transition occurs ex-
actly at the time when all of its preconditions start to be
satisfied. The planning system cannot shift it to some
point in time when the preconditions are satisfied.

4 An Example Problem

Our agent — Little Red Riding Hood — wants to leave grand-
mother’s house. In addition, she wants the wolf to stay out-
side the house so that he cannot eat her grandmother:

goal:

own.location(t in [0..horizon]) =
outside

wolf.location([0..horizon]) = outside

She is currently in the living room with her grandmother,
while the wolf is somewhere outside:

facts:

own.location(0) = living_room
grandmother.location(0) = living_room
grandmother.goal (0) = idle
wolf.location(0) = outside
door.passage (0) = locked

To get outside, Red Riding Hood needs to walk to the en-
trance room, unlock the door, and walk outside. She cannot
lock the door from outside but can tell her grandmother to
lock the door behind her:

action walk_to_entrance:
pre: own.location(t) = living_room
eff: own.location(t+10) = entrance_room

action unlock_door:

pre: own.location(t) = entrance_room
door.passage (t) = locked
eff: door.passage(t+l) = unlocked

action walk_outside:

pre: own.location(t) = entrance_room
door.passage (t) = unlocked

eff: own.location(t+l) = outside



action request_locking:

pre: own.location(t) = living_room
grandmother.location(t) =
living_room
eff: grandmother.goal (t+2) = lock_door

Besides Red Riding Hood’s own actions, there are addi-
tional external transitions. The grandmother will do as re-
quested, and the wolf will get in if the door is unlocked for
more than a second:

transition grandmother_walks_to_entrance:

pre: grandmother.goal(t) = lock_door

grandmother.location(t) =
living_room

eff: grandmother.location (t+20) =

entrance_room

transition grandmother_locks_door:
pre: grandmother.goal(t) = lock_door
grandmother.location(t) =
entrance_room
door.passage (t) = unlocked
eff: door.passage(t+l) = locked

transition wolf_enters_house:

pre: wolf.location(t) = outside
door.passage ([t,t+1]) = unlocked
eff: wolf.location(t+2) = entrance_room

Figure 3 shows an overview of the actions and transitions
of this domain.
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Figure 3: Actions and transitions of the Little Red Riding
Hood example.

5 Firing External Transitions

During the regular planning process, the world states need
to be scanned for matching preconditions of external tran-
sitions, so that the corresponding effects can be inserted.
It is similar to applying a rule-based system (extended by
temporal annotations) until a fix point is reached. External
transitions can be realized by the regular structures of AcC-
TIONS/PRECONDITION TASKS/STATE TASKS (no ACTION

TASKS of course), allowing for additional values for action-
type variables.

The problem for our local-search approach is, however,
how the addition (“firing”) of all applicable external transi-
tions can be enforced. To do so, a new constraint — the
TRANSITION CONSTRAINT (TrC) — is introduced. When
a TrC is introduced in the graph, it notifies all SRCs of the
graph that they should keep the TrC informed about all inter-
vals at which states hold that are tested by the external tran-
sitions’ preconditions. If a new SRC is introduced during the
solving process, it also searches the graph for TrCs and asks
them for states to be monitored for them.

Using the notifications of the SRCs, the TrC internally
monitors the development of the external transitions’ precon-
dition states to see if and when external transitions need to
fire (see Figure 4). In the example, each transition fires once,
but of course, the transitions may generally fire multiple times
over time.
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Figure 4: Keeping track of relevant states inside the TRANSI-
TION CONSTRAINT.

The TrC can be connected to an ACTION object constraint,
indicating that the corresponding action is an external tran-
sition instead of an action executed by the agent. The TrC
involves costs if an external transition needs to fire, but a cor-
responding ACTION is not connected. Similarly, it involves
costs if an ACTION is connected for which the firing condi-
tions of an external transition are not fulfilled (see also Sec-
tion 6.1). The TRANSITION CONSTRAINT’S main improve-
ment heuristics simply add or remove ACTIONS.

Figure 5 shows the corresponding graph specification parts
for the TRANSITION CONSTRAINT.

Usually, only one TrC should exist in the graph because
they might do redundant work otherwise. The structural con-
straint shown in Figure 6 ensures that there is exactly one
TRANSITION CONSTRAINT in the constraint graph at a time.

6 Planning with External Transitions

We want to exploit the functionality of external transitions,
not only passively incorporating their effects. This means that
it must be possible to actively plan external transitions.

6.1 Desired External Transitions

An SRC’s heuristic can add a desired external transition to
change a specific state just like a regular action would be
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added. The desired external transition will not be valid at that
time because otherwise, it would have been inserted by the
TrC before. The plan needs to be repaired so that the desired
transition becomes a “real” external transition.

In case of a regular action, the enforcement of the correct
temporal placement of a precondition can be pursued in a
more isolated way. For an external transition, there is an ad-
ditional condition: At least one of the preconditions must be
placed at the time when its tested state has just changed. This
“at least one” makes checking and enforcing the consistency
of a desired external transition a very global issue. However,
because of our modular constraint-programming approach,
the information when a state change occurs is only available
within an SRC’s local state projection.

Luckily, the introduced TRANSITION CONSTRAINT al-
ready has the global information on the relevant state changes
available because the SRCs notify it about them. Repairing
the firing-related consistency of desired external transition
should thus be a task for the TrC (see Figure 7). To guarantee
that a TrC will note that an ACTION representing a desired ex-
ternal transition was added, an extra cost-function component
is added to the TASK CONSTRAINT that requires an ACTION
with an action-type variable representing an external transi-
tion to be connected to the TrC.

Assigning the repair of a desired external transition to a
TrC is accomplished by adding a cost-function component
to it that represents the firing-related consistency of all con-
nected external transitions, i.e., the condition that at least one
precondition is placed at a state change. For the repair heuris-
tics, however, a new concept must be introduced in our solver:
improvement delegation.

The repair of the firing-related consistency can be done in
multiple ways. The simplest one is a shift of a precondition
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Figure 7: A desired but not yet consistent external transition.

task, which could be done by the TrC itself. But there are oth-
ers possible repairs that require the knowledge of an SRC. For
example, instead of moving the precondition itself, its pre-
ceding state change could be moved — which means moving
the state tasks that realize the state change. Because of this,
a TrC can delegate the improvement to one of the precondi-
tions” SRCs, which in turn have specialized heuristics to deal
with this request.

The delegation of an improvement is not needed in general,
but the more sophisticated knowledge available at another
constraint may speed up the solving process enormously.
Note that these efficiency gains have a downside: The ini-
tiating constraint requires the existence of the constraint to
which the improvement is to be delegated. This opposes con-
straint programming’s concept of an arbitrary composition of
the modular problem components (i.e., constraints and vari-
ables). A heuristic that wants to delegate an improvement
should thus test the existence of the other constraint before,
and provide an alternative repair if the other constraint is not
part of the constraint graph. In addition, a constraint needs to
keep track which improvements have been delegated during
an iteration in order to prevent delegation cycles.

6.2 Manipulating Existing External Transitions

Besides enforcing desired external transitions, existing exter-
nal transitions will often be challenged because an SRC wants
to undo or move the related effect. For example, in the plan-
ning situation of Figure 4, the SRC responsible for projecting
the wolf’s location and having to ensure the goal that the wolf
is outside, will try to remove the state task of the transition
wolf_enters_house. If this transition is a consistent one
instead of a desired, this removal might however be useless
because the TrC will most likely re-establish the transition.

Again, the delegation concept can be applied. The SRC
will hand the improvement over to the TrC, which has the
necessary overview to initiate appropriate changes. In many
cases, the TrC will again delegate the improvement to an
SRC, e.g., to invalidate the precondition that the door is un-
locked for a longer time. Nevertheless, infinite calling cy-
cles cannot occur because the delegations will always move
strictly backward with respect to the temporal projection (the
current time being a final stop).



7 Conclusion

The ability to handle external transitions was based on a kind
of underlying rule-based system, whose firing transitions de-
scribe the world’s dynamics. The planning system uses the
knowledge of these transitions to plan for actions that change
the world in an indirect way, e.g., by making another agent to
execute a service.

Using a modular search framework, such as constraint pro-
gramming, implies many challenges, mostly related to the
global nature of the firing conditions of external transitions.
In our approach, we have thus introduced a specific constraint
that centrally collects the necessary information. Realizing a
plan-improvement step is then often interplay between the lo-
cal constraints and the central one, leading to the concept of
improvement delegation.

The ability to handle and exploit external transitions is an
important step in pushing the functionality of action planning
to a level at which it can be useful for guiding autonomous
agents in dynamic environments and multi-agent domains.
Many open questions still remain and will be tackled in our
future work. For example, firing all possible transitions may
not be computationally feasible in environments that are more
complex. Trade-offs between the amount of knowledge about
the environment and the time to compute it must be explored,
and it is important to develop priority schemes which knowl-
edge to extract.

More information on the underlying EXCALIBUR project
and a sample implementation are available on the project’s
website:
http://www.ai-center.com/projects/excalibur/
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